Abstract

A metal insulator metal (MIM) waveguide structure which propagates a strongly confined sub-wavelength plasmon mode is proposed. In particular the structure permits electrical pumping of the waveguide core. The waveguide can in principle be fabricated with thin cores down to a few tens of nano meters wide. When quantum well material is employed, the waveguide core can be formed with self aligned quantum wire or quantum dot gain material. The performance of the proposed structure is compared to other plasmon mode and dielectric waveguide structures, and shown to provide significantly improved confinement of energy in the high index waveguide core. The implications of such waveguides when used as electrically pumped waveguides for optical amplifiers and nano-lasers is examined. It is shown that these electrically pumped waveguide structures offer the possibility of net modal gains in the region of 1900 cm<sup>-1</sup>, and nano-lasers with intrinsic optical modulation frequencies reaching into the THz regime with minimum pump currents on the order of sixty micro-amps.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. H. A. Atwater, "The promise of plasmonics," Sci. Amer. 296, 38-45 (2007).
  2. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface Plasmon subwavelength optics," Nature 424, 824-830 (2003).
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, "Plasmonics for extreme light concentration and maniupulation," Nat. Mat. 9, 193-204 (2010).
  4. B. Prade, J. Y. Vinet, A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556-13572 (1991).
  5. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, "Terahertz quantum-cascade laser at λ ~ 100 μm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
  6. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, A. Polman, "Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy," Appl. Phys. Lett. 93, 113110 (2008).
  7. V. G. Weizer, N. S. Fatemi, "Low resistance silver contacts to indium phosphide: Electrical and metallurgical considerations," J. Appl. Phys. 73, 2353-2359 (1993).
  8. M. T. Hill, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Exp. 17, 11110 (2009).
  9. F. Kusunoki, T. Yotsuya, J. Takahara, T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguide," Appl. Phys. Lett. 86, 211101 (2005).
  10. M. Krause, "Finite-difference mode solver for curved waveguides with angled and curved dielectric interfaces," J. Lightw. Technol. 29, 691-699 (2011).
  11. M. T. Hill, Semiconductors and Semimetals (Academic, 2012) pp. 335-370.
  12. R. Loudon, "The propagation of electromagnetic energy through an absorbing dielectric," J. Phys. A 3, 233-245 (1970).
  13. S. A. Maier, "Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides," Opt. Commun. 258, 295-299 (2006).
  14. D. Pasquariello, "Selective undercut etching of InGaAs and InGaAsP quantum wells for improved performance of long-wavelength optoelectronic devices," J. Lightw. Technol. 24, 1470-1477 (2006).
  15. R. F. Oulton, V. J. Sorger, D. F. P. Pile, D. A. Genov, X. Zhang, "A hybrid plasmonic waveguide for sub-wavelength confinement and long range propagation," Nature Photon. 2, 496-500 (2008).
  16. V. R. Almeida, Q. Xu, C. A. Barrios, M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
  17. K. Liu, "Wave propagation in deep-subwavelength mode waveguides," Opt. Lett. 37, 2826-2828 (2012).
  18. S. L. Chuang, Physics of Photonic Devices (Wiley, 2009).
  19. E. Yablonovitch, E. O. Kane, "Band structure engineering of semiconductor lasers for optical communications," J. Lightw. Technol. 6, 1292-1299 (1988).
  20. M. Asada, Y. Miyamoto, Y. Suematsu, "Gain and the threshold of three-dimensional quantum-box lasers," IEEE J. Quantum Electron. QE-22, 1915-1921 (1986).
  21. H. Itoh, M. Yoshita, H. Akiyama, "Micro-photoluminescence characterizations of GaInAsP/InP single quantum wires fabricated by dry etching and regrowth," J. Appl. Phys. 102, 093509 (2007).
  22. D. Plumwongrot, T. Maruyama, A. Haque, H. Yagi, K. Miura, Y. Nishimoto, S. Arai, "Polarization anisotropy of spontaneous emission spectra in GaInAsP/InP quantum-wire structures," Jpn. J. Appl. Phys. 47, 3735-3741 (2008).
  23. S.-W. Chang, T.-R. Lin, S. L. Chuang, "Theory of plasmonic Fabry-Perot nanolasers," Opt. Exp. 18, 15039 (2010).
  24. D. Miller, "Device requirements for optical interconnects to silicon chips," Proc. IEEE 97, 1166-1185 (2009).
  25. M. T. Hill, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-208 (2004).
  26. C.-Y. A. Ni, S. L. Chuang, "Theory of high-speed nanolasers and nanoLEDs," Opt. Exp. 12, 16450-16470 (2012).
  27. H. Altug, D. Englund, J. Vu?kovi?, "Ultrafast photonic crystal nanocavity laser," Nature Phys. 2, 485-488 (2006).
  28. D. A. Genov, R. F. Oulton, G. Bartal, X. Zhang, "Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures," Phys. Rev. B 83, 245312 (2011).
  29. M. I. Stockman, "The spaser as a nanoscale quantum generator and ultrafast amplifier," J. Opt. 12, 024004-1-13 (2010).
  30. M. T. Hill, "Lasing in Metallic-Coated Nanocavities," Nature Photon. 1, 589-594 (2007).
  31. M. P. Nezhad, "Room-temperature subwavelength metallo-dielectric lasers," Nature Photon. 4, 395-399 (2010).
  32. M. J. H. Marell, "Plasmonic distributed feedback at telecomunications wavelengths," Opt. Exp. 19, 15109-15118 (2011).
  33. C.-Y. Lu, S.-W. Chang, S.-H. Yang, S. L. Chuang, "Quantum-dot laser with a metal-coated waveguide under continuous-wave operation at room temperature," Appl. Phys. Lett. 95, 233507 (2009).
  34. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature 461, 629-632 (2009).
  35. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, 1960).
  36. K. J. Vahala, "Quantum box fabrication tolerance and size limits in semiconductors and their effect on optical gain," IEEE J. Quantum Electron. 24, 523-530 (1988).
  37. A. Haque, H. Yagi, T. Sano, T. Maruyama, S. Arai, "Electronic band structures of GaInAsP/InP vertically stacked multiple quantum wires with strain-compensating barriers," J. Appl. Phys. 94, 2018-2023 (2003).
  38. A. M. Lakhani, M.-K. Kim, E. K. Lau, M. C. Wu, "Plasmonic crystal defect nanolaser," Opt. Exp. 19, 18238 (2011).
  39. J. B. Judkins, R. W. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings," J. Opt. Soc. Amer. A 12, 1974-1983 (1995).
  40. P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

2012

C.-Y. A. Ni, S. L. Chuang, "Theory of high-speed nanolasers and nanoLEDs," Opt. Exp. 12, 16450-16470 (2012).

K. Liu, "Wave propagation in deep-subwavelength mode waveguides," Opt. Lett. 37, 2826-2828 (2012).

2011

D. A. Genov, R. F. Oulton, G. Bartal, X. Zhang, "Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures," Phys. Rev. B 83, 245312 (2011).

M. J. H. Marell, "Plasmonic distributed feedback at telecomunications wavelengths," Opt. Exp. 19, 15109-15118 (2011).

A. M. Lakhani, M.-K. Kim, E. K. Lau, M. C. Wu, "Plasmonic crystal defect nanolaser," Opt. Exp. 19, 18238 (2011).

M. Krause, "Finite-difference mode solver for curved waveguides with angled and curved dielectric interfaces," J. Lightw. Technol. 29, 691-699 (2011).

2010

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, "Plasmonics for extreme light concentration and maniupulation," Nat. Mat. 9, 193-204 (2010).

M. I. Stockman, "The spaser as a nanoscale quantum generator and ultrafast amplifier," J. Opt. 12, 024004-1-13 (2010).

M. P. Nezhad, "Room-temperature subwavelength metallo-dielectric lasers," Nature Photon. 4, 395-399 (2010).

S.-W. Chang, T.-R. Lin, S. L. Chuang, "Theory of plasmonic Fabry-Perot nanolasers," Opt. Exp. 18, 15039 (2010).

2009

D. Miller, "Device requirements for optical interconnects to silicon chips," Proc. IEEE 97, 1166-1185 (2009).

C.-Y. Lu, S.-W. Chang, S.-H. Yang, S. L. Chuang, "Quantum-dot laser with a metal-coated waveguide under continuous-wave operation at room temperature," Appl. Phys. Lett. 95, 233507 (2009).

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature 461, 629-632 (2009).

M. T. Hill, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Exp. 17, 11110 (2009).

2008

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, A. Polman, "Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy," Appl. Phys. Lett. 93, 113110 (2008).

R. F. Oulton, V. J. Sorger, D. F. P. Pile, D. A. Genov, X. Zhang, "A hybrid plasmonic waveguide for sub-wavelength confinement and long range propagation," Nature Photon. 2, 496-500 (2008).

D. Plumwongrot, T. Maruyama, A. Haque, H. Yagi, K. Miura, Y. Nishimoto, S. Arai, "Polarization anisotropy of spontaneous emission spectra in GaInAsP/InP quantum-wire structures," Jpn. J. Appl. Phys. 47, 3735-3741 (2008).

2007

M. T. Hill, "Lasing in Metallic-Coated Nanocavities," Nature Photon. 1, 589-594 (2007).

H. Itoh, M. Yoshita, H. Akiyama, "Micro-photoluminescence characterizations of GaInAsP/InP single quantum wires fabricated by dry etching and regrowth," J. Appl. Phys. 102, 093509 (2007).

H. A. Atwater, "The promise of plasmonics," Sci. Amer. 296, 38-45 (2007).

2006

S. A. Maier, "Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides," Opt. Commun. 258, 295-299 (2006).

D. Pasquariello, "Selective undercut etching of InGaAs and InGaAsP quantum wells for improved performance of long-wavelength optoelectronic devices," J. Lightw. Technol. 24, 1470-1477 (2006).

H. Altug, D. Englund, J. Vu?kovi?, "Ultrafast photonic crystal nanocavity laser," Nature Phys. 2, 485-488 (2006).

2005

F. Kusunoki, T. Yotsuya, J. Takahara, T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguide," Appl. Phys. Lett. 86, 211101 (2005).

2004

M. T. Hill, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-208 (2004).

V. R. Almeida, Q. Xu, C. A. Barrios, M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).

2003

A. Haque, H. Yagi, T. Sano, T. Maruyama, S. Arai, "Electronic band structures of GaInAsP/InP vertically stacked multiple quantum wires with strain-compensating barriers," J. Appl. Phys. 94, 2018-2023 (2003).

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface Plasmon subwavelength optics," Nature 424, 824-830 (2003).

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, "Terahertz quantum-cascade laser at λ ~ 100 μm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).

1995

J. B. Judkins, R. W. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings," J. Opt. Soc. Amer. A 12, 1974-1983 (1995).

1993

V. G. Weizer, N. S. Fatemi, "Low resistance silver contacts to indium phosphide: Electrical and metallurgical considerations," J. Appl. Phys. 73, 2353-2359 (1993).

1991

B. Prade, J. Y. Vinet, A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556-13572 (1991).

1988

E. Yablonovitch, E. O. Kane, "Band structure engineering of semiconductor lasers for optical communications," J. Lightw. Technol. 6, 1292-1299 (1988).

K. J. Vahala, "Quantum box fabrication tolerance and size limits in semiconductors and their effect on optical gain," IEEE J. Quantum Electron. 24, 523-530 (1988).

1986

M. Asada, Y. Miyamoto, Y. Suematsu, "Gain and the threshold of three-dimensional quantum-box lasers," IEEE J. Quantum Electron. QE-22, 1915-1921 (1986).

1972

P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

1970

R. Loudon, "The propagation of electromagnetic energy through an absorbing dielectric," J. Phys. A 3, 233-245 (1970).

Appl. Phys. Lett.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, J. L. Reno, "Terahertz quantum-cascade laser at λ ~ 100 μm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, A. Polman, "Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy," Appl. Phys. Lett. 93, 113110 (2008).

F. Kusunoki, T. Yotsuya, J. Takahara, T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguide," Appl. Phys. Lett. 86, 211101 (2005).

C.-Y. Lu, S.-W. Chang, S.-H. Yang, S. L. Chuang, "Quantum-dot laser with a metal-coated waveguide under continuous-wave operation at room temperature," Appl. Phys. Lett. 95, 233507 (2009).

IEEE J. Quantum Electron.

K. J. Vahala, "Quantum box fabrication tolerance and size limits in semiconductors and their effect on optical gain," IEEE J. Quantum Electron. 24, 523-530 (1988).

M. Asada, Y. Miyamoto, Y. Suematsu, "Gain and the threshold of three-dimensional quantum-box lasers," IEEE J. Quantum Electron. QE-22, 1915-1921 (1986).

J. Appl. Phys.

H. Itoh, M. Yoshita, H. Akiyama, "Micro-photoluminescence characterizations of GaInAsP/InP single quantum wires fabricated by dry etching and regrowth," J. Appl. Phys. 102, 093509 (2007).

V. G. Weizer, N. S. Fatemi, "Low resistance silver contacts to indium phosphide: Electrical and metallurgical considerations," J. Appl. Phys. 73, 2353-2359 (1993).

A. Haque, H. Yagi, T. Sano, T. Maruyama, S. Arai, "Electronic band structures of GaInAsP/InP vertically stacked multiple quantum wires with strain-compensating barriers," J. Appl. Phys. 94, 2018-2023 (2003).

J. Lightw. Technol.

D. Pasquariello, "Selective undercut etching of InGaAs and InGaAsP quantum wells for improved performance of long-wavelength optoelectronic devices," J. Lightw. Technol. 24, 1470-1477 (2006).

M. Krause, "Finite-difference mode solver for curved waveguides with angled and curved dielectric interfaces," J. Lightw. Technol. 29, 691-699 (2011).

E. Yablonovitch, E. O. Kane, "Band structure engineering of semiconductor lasers for optical communications," J. Lightw. Technol. 6, 1292-1299 (1988).

J. Opt.

M. I. Stockman, "The spaser as a nanoscale quantum generator and ultrafast amplifier," J. Opt. 12, 024004-1-13 (2010).

J. Opt. Soc. Amer. A

J. B. Judkins, R. W. Ziolkowski, "Finite-difference time-domain modeling of nonperfectly conducting metallic thin-film gratings," J. Opt. Soc. Amer. A 12, 1974-1983 (1995).

J. Phys. A

R. Loudon, "The propagation of electromagnetic energy through an absorbing dielectric," J. Phys. A 3, 233-245 (1970).

Jpn. J. Appl. Phys.

D. Plumwongrot, T. Maruyama, A. Haque, H. Yagi, K. Miura, Y. Nishimoto, S. Arai, "Polarization anisotropy of spontaneous emission spectra in GaInAsP/InP quantum-wire structures," Jpn. J. Appl. Phys. 47, 3735-3741 (2008).

Nat. Mat.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, "Plasmonics for extreme light concentration and maniupulation," Nat. Mat. 9, 193-204 (2010).

Nature

W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface Plasmon subwavelength optics," Nature 424, 824-830 (2003).

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, "Plasmon lasers at deep subwavelength scale," Nature 461, 629-632 (2009).

M. T. Hill, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-208 (2004).

Nature Photon.

R. F. Oulton, V. J. Sorger, D. F. P. Pile, D. A. Genov, X. Zhang, "A hybrid plasmonic waveguide for sub-wavelength confinement and long range propagation," Nature Photon. 2, 496-500 (2008).

M. T. Hill, "Lasing in Metallic-Coated Nanocavities," Nature Photon. 1, 589-594 (2007).

M. P. Nezhad, "Room-temperature subwavelength metallo-dielectric lasers," Nature Photon. 4, 395-399 (2010).

Nature Phys.

H. Altug, D. Englund, J. Vu?kovi?, "Ultrafast photonic crystal nanocavity laser," Nature Phys. 2, 485-488 (2006).

Opt. Commun.

S. A. Maier, "Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides," Opt. Commun. 258, 295-299 (2006).

Opt. Exp.

S.-W. Chang, T.-R. Lin, S. L. Chuang, "Theory of plasmonic Fabry-Perot nanolasers," Opt. Exp. 18, 15039 (2010).

M. T. Hill, "Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides," Opt. Exp. 17, 11110 (2009).

A. M. Lakhani, M.-K. Kim, E. K. Lau, M. C. Wu, "Plasmonic crystal defect nanolaser," Opt. Exp. 19, 18238 (2011).

M. J. H. Marell, "Plasmonic distributed feedback at telecomunications wavelengths," Opt. Exp. 19, 15109-15118 (2011).

C.-Y. A. Ni, S. L. Chuang, "Theory of high-speed nanolasers and nanoLEDs," Opt. Exp. 12, 16450-16470 (2012).

Opt. Lett.

Phys. Rev. B

P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

D. A. Genov, R. F. Oulton, G. Bartal, X. Zhang, "Anomalous spectral scaling of light emission rates in low-dimensional metallic nanostructures," Phys. Rev. B 83, 245312 (2011).

B. Prade, J. Y. Vinet, A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556-13572 (1991).

Proc. IEEE

D. Miller, "Device requirements for optical interconnects to silicon chips," Proc. IEEE 97, 1166-1185 (2009).

Sci. Amer.

H. A. Atwater, "The promise of plasmonics," Sci. Amer. 296, 38-45 (2007).

Other

M. T. Hill, Semiconductors and Semimetals (Academic, 2012) pp. 335-370.

L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, 1960).

S. L. Chuang, Physics of Photonic Devices (Wiley, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.