Abstract

A scheme for monochromatic terahertz (THz) generation via cascading enhanced Cherenkov-type difference frequency generation (DFG) in a sandwich-like waveguide is proposed. The novel scheme has the potential to overcome the quantum-defect limit and to provide an efficient output coupling. This process is elucidated by developing a coupled-mode theory and taking into account the pump depletion, waveguide mode properties, and THz output coupling. The effect of cascading enhancement is analyzed by comparing with non-cascaded DFG situation. It is predicted that THz power can be boosted by nearly 8-fold with a 400 MW/cm<sup>2</sup> pump in a 40-mm-long Si-LiNbO<sub>3</sub>-Si waveguide.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. D. Saeedkia, S. Safavi-Naeini, "Terahertz photonics: Optoelectronic techniques for generation and detection of terahertz waves," J. Lightw. Technol. 26, 2409-2423 (2008).
  2. S. Y. Tochitsky, C. Sung, S. E. Trubnick, C. Joshi, K. L. Vodopyanov, "High-power tunable, 0.5–3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines," J. Opt. Soc. Am. B 24, 2509-2516 (2007).
  3. M. E. Dearborn, K. Koch, G. T. Moore, J. C. Diels, "Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing," Opt. Lett. 23, 759-761 (1998).
  4. M. Cronin-Golomb, "Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production," Opt. Lett. 29, 2046-2048 (2004).
  5. J. E. Schaar, "Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide," IEEE J. Sel. Topics Quantum Electron. 14, 354-362 (2008).
  6. S. B. Bodrov, M. I. Bakunov, M. Hangyo, "Efficient Cherenkov emission of broadband terahertz radiation from an ultrashort laser pulse in a sandwich structure with nonlinear core," J. Appl. Phys. 104, 093105 (2008).
  7. J. A. L'Huillier, "Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate—Part 2: Experiments," Appl. Phys. B 86, 197-208 (2007).
  8. P. X. Liu, "Theory of monochromatic terahertz generation via Cherenkov phase-matched difference frequency generation in LiNbO3 crystal," J. Opt. Soc. Am. B 29, 2425-2430 (2012).
  9. K. Suizu, "Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation," Opt. Exp. 17, 6676-6681 (2009).
  10. M. J. Li, M. P. De Micheli, Q. He, D. B. Ostrowsky, "Cerenkov configuration second harmonic generation in proton-exchanged lithium niobate guides," IEEE J. Quantum Electron. 26, 1384-1393 (1990).
  11. N. Hashizume, "Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides," IEEE J. Quantum Electron. 28, 1798-1815 (1992).
  12. P. X. Liu, "Widely tunable, monochromatic THz generation via Cherenkov-type difference frequency generation in an asymmetric waveguide," IEEE J. Quantum Electron. 49, 179-185 (2013).
  13. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 2003) pp. 30.
  14. M. Cherchi, "Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: A material comparison," IEEE J. Quantum Electron. 46, 368-376 (2010).
  15. T. Chen, J. Sun, L. Li, J. Tang, "Proposal for efficient terahertz-wave difference frequency generation in an AlGaAs photonic crystal waveguide," J. Lightw. Technol. 30, 2156-2162 (2012).
  16. A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. 9, 919-933 (1973).
  17. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, "Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3," Opt. Lett. 21, 591-593 (1996).
  18. D. E. Zelmon, D. L. Small, D. Jundt, "Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate," J. Opt. Soc. Am. B 14, 3319-3322 (1997).
  19. L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, K. Polgár, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505 (2005).
  20. D. R. Grischkowsky, "An ultrafast optoelectronic THz beam system: Applications to time-domain spectroscopy," Opt. Photonics News 3, 21-28 (1992).
  21. J. Shikata, M. Sato, T. Taniuchi, H. Ito, K. Kawase, "Enhancement of terahertz-wave output from LiNbO3 optical parametric oscillators by cryogenic cooling," Opt. Lett. 24, 202-204 (1999).
  22. K. L. Vodopyanov, "Optical THz-wave generation with periodically-inverted GaAs," Laser Photon. Rev. 2, 11-25 (2008).
  23. M. I. Bakunov, S. B. Bodrov, "Si-LiNbO3-air-metal structure for concentrated terahertz emission from ultrashort laser pulses," Appl. Phys. B 98, 1-4 (2010).
  24. S. B. Bodrov, I. E. Ilyakov, B. V. Shishkin, A. N. Stepanov, "Efficient terahertz generation by optical rectification in Si-LiNbO3-air-metal sandwich structure with variable air gap," Appl. Phys. Lett. 100, 201114 (2012).

2013 (1)

P. X. Liu, "Widely tunable, monochromatic THz generation via Cherenkov-type difference frequency generation in an asymmetric waveguide," IEEE J. Quantum Electron. 49, 179-185 (2013).

2012 (3)

T. Chen, J. Sun, L. Li, J. Tang, "Proposal for efficient terahertz-wave difference frequency generation in an AlGaAs photonic crystal waveguide," J. Lightw. Technol. 30, 2156-2162 (2012).

S. B. Bodrov, I. E. Ilyakov, B. V. Shishkin, A. N. Stepanov, "Efficient terahertz generation by optical rectification in Si-LiNbO3-air-metal sandwich structure with variable air gap," Appl. Phys. Lett. 100, 201114 (2012).

P. X. Liu, "Theory of monochromatic terahertz generation via Cherenkov phase-matched difference frequency generation in LiNbO3 crystal," J. Opt. Soc. Am. B 29, 2425-2430 (2012).

2010 (2)

M. I. Bakunov, S. B. Bodrov, "Si-LiNbO3-air-metal structure for concentrated terahertz emission from ultrashort laser pulses," Appl. Phys. B 98, 1-4 (2010).

M. Cherchi, "Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: A material comparison," IEEE J. Quantum Electron. 46, 368-376 (2010).

2009 (1)

K. Suizu, "Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation," Opt. Exp. 17, 6676-6681 (2009).

2008 (4)

D. Saeedkia, S. Safavi-Naeini, "Terahertz photonics: Optoelectronic techniques for generation and detection of terahertz waves," J. Lightw. Technol. 26, 2409-2423 (2008).

J. E. Schaar, "Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide," IEEE J. Sel. Topics Quantum Electron. 14, 354-362 (2008).

S. B. Bodrov, M. I. Bakunov, M. Hangyo, "Efficient Cherenkov emission of broadband terahertz radiation from an ultrashort laser pulse in a sandwich structure with nonlinear core," J. Appl. Phys. 104, 093105 (2008).

K. L. Vodopyanov, "Optical THz-wave generation with periodically-inverted GaAs," Laser Photon. Rev. 2, 11-25 (2008).

2007 (2)

J. A. L'Huillier, "Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate—Part 2: Experiments," Appl. Phys. B 86, 197-208 (2007).

S. Y. Tochitsky, C. Sung, S. E. Trubnick, C. Joshi, K. L. Vodopyanov, "High-power tunable, 0.5–3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines," J. Opt. Soc. Am. B 24, 2509-2516 (2007).

2005 (1)

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, K. Polgár, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505 (2005).

2004 (1)

M. Cronin-Golomb, "Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production," Opt. Lett. 29, 2046-2048 (2004).

1999 (1)

1998 (1)

1997 (1)

1996 (1)

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, "Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3," Opt. Lett. 21, 591-593 (1996).

1992 (2)

N. Hashizume, "Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides," IEEE J. Quantum Electron. 28, 1798-1815 (1992).

D. R. Grischkowsky, "An ultrafast optoelectronic THz beam system: Applications to time-domain spectroscopy," Opt. Photonics News 3, 21-28 (1992).

1990 (1)

M. J. Li, M. P. De Micheli, Q. He, D. B. Ostrowsky, "Cerenkov configuration second harmonic generation in proton-exchanged lithium niobate guides," IEEE J. Quantum Electron. 26, 1384-1393 (1990).

1973 (1)

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. 9, 919-933 (1973).

Appl. Phys. B (1)

M. I. Bakunov, S. B. Bodrov, "Si-LiNbO3-air-metal structure for concentrated terahertz emission from ultrashort laser pulses," Appl. Phys. B 98, 1-4 (2010).

Appl. Phys. B (1)

J. A. L'Huillier, "Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate—Part 2: Experiments," Appl. Phys. B 86, 197-208 (2007).

Appl. Phys. Lett. (1)

S. B. Bodrov, I. E. Ilyakov, B. V. Shishkin, A. N. Stepanov, "Efficient terahertz generation by optical rectification in Si-LiNbO3-air-metal sandwich structure with variable air gap," Appl. Phys. Lett. 100, 201114 (2012).

IEEE J. Quantum Electron. (2)

M. J. Li, M. P. De Micheli, Q. He, D. B. Ostrowsky, "Cerenkov configuration second harmonic generation in proton-exchanged lithium niobate guides," IEEE J. Quantum Electron. 26, 1384-1393 (1990).

P. X. Liu, "Widely tunable, monochromatic THz generation via Cherenkov-type difference frequency generation in an asymmetric waveguide," IEEE J. Quantum Electron. 49, 179-185 (2013).

IEEE J. Quantum Electron. (1)

M. Cherchi, "Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: A material comparison," IEEE J. Quantum Electron. 46, 368-376 (2010).

IEEE J. Quantum Electron. (2)

A. Yariv, "Coupled-mode theory for guided-wave optics," IEEE J. Quantum Electron. 9, 919-933 (1973).

N. Hashizume, "Theoretical analysis of Cerenkov-type optical second-harmonic generation in slab waveguides," IEEE J. Quantum Electron. 28, 1798-1815 (1992).

IEEE J. Sel. Topics Quantum Electron. (1)

J. E. Schaar, "Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide," IEEE J. Sel. Topics Quantum Electron. 14, 354-362 (2008).

J. Lightw. Technol. (1)

T. Chen, J. Sun, L. Li, J. Tang, "Proposal for efficient terahertz-wave difference frequency generation in an AlGaAs photonic crystal waveguide," J. Lightw. Technol. 30, 2156-2162 (2012).

J. Opt. Soc. Am. B (1)

S. Y. Tochitsky, C. Sung, S. E. Trubnick, C. Joshi, K. L. Vodopyanov, "High-power tunable, 0.5–3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines," J. Opt. Soc. Am. B 24, 2509-2516 (2007).

J. Appl. Phys. (2)

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, K. Polgár, "Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range," J. Appl. Phys. 97, 123505 (2005).

S. B. Bodrov, M. I. Bakunov, M. Hangyo, "Efficient Cherenkov emission of broadband terahertz radiation from an ultrashort laser pulse in a sandwich structure with nonlinear core," J. Appl. Phys. 104, 093105 (2008).

J. Lightw. Technol. (1)

D. Saeedkia, S. Safavi-Naeini, "Terahertz photonics: Optoelectronic techniques for generation and detection of terahertz waves," J. Lightw. Technol. 26, 2409-2423 (2008).

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

K. L. Vodopyanov, "Optical THz-wave generation with periodically-inverted GaAs," Laser Photon. Rev. 2, 11-25 (2008).

Opt. Lett. (2)

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, "Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3," Opt. Lett. 21, 591-593 (1996).

M. Cronin-Golomb, "Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production," Opt. Lett. 29, 2046-2048 (2004).

Opt. Exp. (1)

K. Suizu, "Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation," Opt. Exp. 17, 6676-6681 (2009).

Opt. Lett. (2)

Opt. Photonics News (1)

D. R. Grischkowsky, "An ultrafast optoelectronic THz beam system: Applications to time-domain spectroscopy," Opt. Photonics News 3, 21-28 (1992).

Other (1)

R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, 2003) pp. 30.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.