A. Deinega, S. John, "Effective optical response of silicon to
sunlight in the finite-difference time-domain method," Opt.
Lett. 37, 112-114 (2012).

P. Neutens, L. Lagae, G. Borghs, P. Van Dorpe, "Plasmon filters and resonators in metal-insulator-metal
waveguides," Opt. Exp. 20, 3408-3423 (2012).

S. R. Mirnaziry, A. Setayesh, M. S. Abrishamian, "Design and analysis of plasmonic
filters based on stubs," J. Opt. Soc. Amer.
B 28, 1300-1307 (2011).

M. I. Stockman, "Nanoplasmonics: Past, present,
and glimpse into future," Opt. Exp. 19, 22 029-22 106 (2011).

A. C. Tasolamprou, D. C. Zografopoulos, E. E. Kriezis, "Liquid crystal-based dielectric
loaded surface plasmon polariton optical switches," J.
Appl. Phys. 110, (2011) art. no. 093102.

A. Vial, T. Laroche, M. Dridi, L. Le Cunff, "A new model of dispersion for metals leading
to a more accurate modeling of plasmonic structures using the FDTD method," Appl. Phys. A: Mater. 103, 849-853 (2011).

L. J. Prokopeva, J. D. Borneman, A. V. Kildishev, "Optical dispersion models for
time-domain modeling of metal-dielectric nanostructures," IEEE Trans. Magn. 47, 1150-1153 (2011).

Y. Ren, J. K. Chen, Y. Zhang, "Optical properties and thermal response
of copper films induced by ultrashort-pulsed lasers," J.
Appl. Phys. 110, (2011) art. no. 113102.

M. Hamidi, F. I. Baida, A. Belkhir, O. Lamrous, "Implementation of the critical
points model in a SFM-FDTD code working in oblique incidence," J. Phys. D: Appl. Phys. 44, (2011) art. no. 245101.

Z. Lin, Y. Fang, J. Hu, C. Zhang, "On the FDTD formulations for modeling wideband Lorentzian
media," IEEE Trans. Antennas Propag. 59, 1338-1346 (2011).

J.-Y. Lu, K.-P. Chiu, H.-Y. Chao, Y.-H. Chang, "Multiple metallic-shell nanocylinders
for surface-enhanced spectroscopes," Nanoscale
Res. Lett. 6, 173- (2011).

J. Lu, Y. Change, "Implementation of an efficient
dielectric function into the finite difference time domain method for simulating
the coupling between localized surface plasmons of nanostrustures," Superlattice. Microst. 47, 60-65 (2010).

D. K. Gramotnev, S. I. Bozhevolnyi, "Plasmonics beyond the diffraction
limit," Nat. Photonics 4, 83-91 (2010).

I. Udagedara, M. Premaratne, I. D. Rukhlenko, H. T. Hattori, G. P. Agrawal, "Unified perfectly matched layer
for finite-difference time-domain modeling of dispersive optical materials," Opt. Exp. 17, 21
179-21 190 (2009).

T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 44-50 (2008).

T. J. A. Mohammadi, M. Agio, "Dispersive contour-path algorithm for the
two-dimensional finite-difference time-domain method," Opt.
Exp. 16, 7397-7406 (2008).

K. P. Prokopidis, "On the development of efficient
FDTD-PML formulations for general dispersive media," Int.
J. Numer. Model. 21, 394-411 (2008).

Y. Zhao, Y. Hao, "Finite-difference time-domain study of guided
modes in nano-plasmonic waveguides," IEEE Trans.
Antennas Propag. 55, 3070-3077 (2007).

K. P. Prokopidis, T. D. Tsiboukis, "Modeling of ground-penetrating
radar for detecting buried objects in dispersive soils," Appl. Comput. Electron. 22, 287-294 (2007).

F. Hao, P. Nordlander, "Efficient dielectric function
for FDTD simulation of the optical properties of silver and gold nanoparticles," Chem. Phys. Lett. 446, 115-118 (2007).

A. Vial, "Implementation of the critical
points model in the recursive convolution method for modelling dispersive
media with the finite-difference time domain method," J.
Opt. A: Pure Appl. Opt. 9, 745-748 (2007).

A. Vial, T. Laroche, "Description of dispersion of
metals by means of the critical points model and application to the study
of resonant structures using the FDTD method," J.
Phys. D: Appl. Phys. 40, 7152-7158 (2007).

M. Han, R. Dutton, S. Fan, "Model dispersive media in finite-difference
time-domain method with complex-conjugate pole-residue pairs," IEEE Microw. Wireless Compon. Lett. 16, 119-121 (2006).

P. G. Etchegoin, E. C, L. Ru, M. Meyer, "An analytic model for the optical properties of gold," J. Chem. Phys. 125, (2006) art. no. 164705.

A. Mohammadi, M. Agio, "Dispersive contour-path finite-difference
time-domain algorithm for modelling surface plasmon polaritons at flat interfaces," Opt. Exp. 14, 11
330-11 338 (2006).

S. A. Maier, "Plasmonics: Metal nanostructures
for subwavelength photonic devices," IEEE J.
Sel. Top. Quantum Electron. 12, 1214-1220 (2006).

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, "Plasmon slot waveguides: Towards
chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, (2006) art. no. 035407.

T. Grosges, A. Vial, D. Barchiesi, "Models of near-field spectroscopic studies:
Comparison between finite-element and finite-difference methods," Opt. Exp. 13, 8483-8497 (2005).

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, M. L. de la Chapelle, "Improved analytical fit of
gold dispersion: Application to the modeling of extinction spectra with a
finite-difference time-domain method," Phys.
Rev. B 71, (2005) art.
no. 085416.

M. Fujii, M. Tahara, I. Sakagami, W. Freude, P. Russer, "High-order FDTD and auxiliary
differential equation formulation of optical pulse propagation in 2-D Kerr
and Raman nonlinear dispersive media," IEEE
J. Quantum Electron. 40, 175-182 (2004).

D. Popovic, M. Okoniewski, "Effective permittivity at the
interface of dispersive dielectrics in FDTD," IEEE
Microw. Guided Wave Lett. 12, 401-403 (2003).

O. Ramadan, "Auxiliary differential equation
formulation: An efficient implementation of the perfectly matched layer," IEEE Microw. Wireless Compon. Lett. 13, 69-71 (2003).

M. C. Beard, C. A. Schmuttenmaer, "Using the finite-difference
time-domain pulse propagation method to simulate time-resolved THz experiments," J. Chem. Phys. 114, 2903-2909 (2001).

J. Pereda, L. Vielva, A. Vegas, A. Prieto, "Analyzing the stability of the FDTD technique
by combining the von Neumann method with the Routh-Hurwitz criterion," IEEE Trans. Microw. Theory Tech. 49, 377-381 (2001).

A. Zhao, J. Juntunen, A. Raisanen, "Generalized material-independent
PML absorbers for the FDTD simulation of electromagnetic waves in arbitrary
anisotropic dielectric and magnetic media," IEEE
Microw. Guided Wave Lett. 8, 52-54 (1998).

J. P. Bérenger, "A perfectly matched layer for
the absorption of electromagnetic waves," J.
Comput. Phys. 114, 185-200 (1994).

P. B. Johnson, R. W. Christy, "Optical constants of the noble
metals," Phys. Rev. B 6, 4370-4379 (1972).

K. P. Prokopidis, T. D. Tsiboukis, "Modeling of ground-penetrating
radar for detecting buried objects in dispersive soils," Appl. Comput. Electron. 22, 287-294 (2007).

A. Vial, T. Laroche, M. Dridi, L. Le Cunff, "A new model of dispersion for metals leading
to a more accurate modeling of plasmonic structures using the FDTD method," Appl. Phys. A: Mater. 103, 849-853 (2011).

F. Hao, P. Nordlander, "Efficient dielectric function
for FDTD simulation of the optical properties of silver and gold nanoparticles," Chem. Phys. Lett. 446, 115-118 (2007).

M. Fujii, M. Tahara, I. Sakagami, W. Freude, P. Russer, "High-order FDTD and auxiliary
differential equation formulation of optical pulse propagation in 2-D Kerr
and Raman nonlinear dispersive media," IEEE
J. Quantum Electron. 40, 175-182 (2004).

D. Popovic, M. Okoniewski, "Effective permittivity at the
interface of dispersive dielectrics in FDTD," IEEE
Microw. Guided Wave Lett. 12, 401-403 (2003).

A. Zhao, J. Juntunen, A. Raisanen, "Generalized material-independent
PML absorbers for the FDTD simulation of electromagnetic waves in arbitrary
anisotropic dielectric and magnetic media," IEEE
Microw. Guided Wave Lett. 8, 52-54 (1998).

S. A. Maier, "Plasmonics: Metal nanostructures
for subwavelength photonic devices," IEEE J.
Sel. Top. Quantum Electron. 12, 1214-1220 (2006).

O. Ramadan, "Auxiliary differential equation
formulation: An efficient implementation of the perfectly matched layer," IEEE Microw. Wireless Compon. Lett. 13, 69-71 (2003).

M. Han, R. Dutton, S. Fan, "Model dispersive media in finite-difference
time-domain method with complex-conjugate pole-residue pairs," IEEE Microw. Wireless Compon. Lett. 16, 119-121 (2006).

Y. Zhao, Y. Hao, "Finite-difference time-domain study of guided
modes in nano-plasmonic waveguides," IEEE Trans.
Antennas Propag. 55, 3070-3077 (2007).

Z. Lin, Y. Fang, J. Hu, C. Zhang, "On the FDTD formulations for modeling wideband Lorentzian
media," IEEE Trans. Antennas Propag. 59, 1338-1346 (2011).

L. J. Prokopeva, J. D. Borneman, A. V. Kildishev, "Optical dispersion models for
time-domain modeling of metal-dielectric nanostructures," IEEE Trans. Magn. 47, 1150-1153 (2011).

J. Pereda, L. Vielva, A. Vegas, A. Prieto, "Analyzing the stability of the FDTD technique
by combining the von Neumann method with the Routh-Hurwitz criterion," IEEE Trans. Microw. Theory Tech. 49, 377-381 (2001).

K. P. Prokopidis, "On the development of efficient
FDTD-PML formulations for general dispersive media," Int.
J. Numer. Model. 21, 394-411 (2008).

Y. Ren, J. K. Chen, Y. Zhang, "Optical properties and thermal response
of copper films induced by ultrashort-pulsed lasers," J.
Appl. Phys. 110, (2011) art. no. 113102.

A. C. Tasolamprou, D. C. Zografopoulos, E. E. Kriezis, "Liquid crystal-based dielectric
loaded surface plasmon polariton optical switches," J.
Appl. Phys. 110, (2011) art. no. 093102.

J. P. Bérenger, "A perfectly matched layer for
the absorption of electromagnetic waves," J.
Comput. Phys. 114, 185-200 (1994).

A. Vial, "Implementation of the critical
points model in the recursive convolution method for modelling dispersive
media with the finite-difference time domain method," J.
Opt. A: Pure Appl. Opt. 9, 745-748 (2007).

A. Vial, T. Laroche, "Description of dispersion of
metals by means of the critical points model and application to the study
of resonant structures using the FDTD method," J.
Phys. D: Appl. Phys. 40, 7152-7158 (2007).

P. G. Etchegoin, E. C, L. Ru, M. Meyer, "An analytic model for the optical properties of gold," J. Chem. Phys. 125, (2006) art. no. 164705.

M. C. Beard, C. A. Schmuttenmaer, "Using the finite-difference
time-domain pulse propagation method to simulate time-resolved THz experiments," J. Chem. Phys. 114, 2903-2909 (2001).

S. R. Mirnaziry, A. Setayesh, M. S. Abrishamian, "Design and analysis of plasmonic
filters based on stubs," J. Opt. Soc. Amer.
B 28, 1300-1307 (2011).

M. Hamidi, F. I. Baida, A. Belkhir, O. Lamrous, "Implementation of the critical
points model in a SFM-FDTD code working in oblique incidence," J. Phys. D: Appl. Phys. 44, (2011) art. no. 245101.

J.-Y. Lu, K.-P. Chiu, H.-Y. Chao, Y.-H. Chang, "Multiple metallic-shell nanocylinders
for surface-enhanced spectroscopes," Nanoscale
Res. Lett. 6, 173- (2011).

D. K. Gramotnev, S. I. Bozhevolnyi, "Plasmonics beyond the diffraction
limit," Nat. Photonics 4, 83-91 (2010).

T. J. A. Mohammadi, M. Agio, "Dispersive contour-path algorithm for the
two-dimensional finite-difference time-domain method," Opt.
Exp. 16, 7397-7406 (2008).

A. Deinega, S. John, "Effective optical response of silicon to
sunlight in the finite-difference time-domain method," Opt.
Lett. 37, 112-114 (2012).

M. I. Stockman, "Nanoplasmonics: Past, present,
and glimpse into future," Opt. Exp. 19, 22 029-22 106 (2011).

A. Mohammadi, M. Agio, "Dispersive contour-path finite-difference
time-domain algorithm for modelling surface plasmon polaritons at flat interfaces," Opt. Exp. 14, 11
330-11 338 (2006).

T. Grosges, A. Vial, D. Barchiesi, "Models of near-field spectroscopic studies:
Comparison between finite-element and finite-difference methods," Opt. Exp. 13, 8483-8497 (2005).

P. Neutens, L. Lagae, G. Borghs, P. Van Dorpe, "Plasmon filters and resonators in metal-insulator-metal
waveguides," Opt. Exp. 20, 3408-3423 (2012).

I. Udagedara, M. Premaratne, I. D. Rukhlenko, H. T. Hattori, G. P. Agrawal, "Unified perfectly matched layer
for finite-difference time-domain modeling of dispersive optical materials," Opt. Exp. 17, 21
179-21 190 (2009).

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, M. L. de la Chapelle, "Improved analytical fit of
gold dispersion: Application to the modeling of extinction spectra with a
finite-difference time-domain method," Phys.
Rev. B 71, (2005) art.
no. 085416.

P. B. Johnson, R. W. Christy, "Optical constants of the noble
metals," Phys. Rev. B 6, 4370-4379 (1972).

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, "Plasmon slot waveguides: Towards
chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, (2006) art. no. 035407.

T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 44-50 (2008).

J. Lu, Y. Change, "Implementation of an efficient
dielectric function into the finite difference time domain method for simulating
the coupling between localized surface plasmons of nanostrustures," Superlattice. Microst. 47, 60-65 (2010).

E. D. Palik, Handbook of Optical Constants of
Solids (Academic, 1985).

E. Le Ru, P. Etchegoin, Principles of Surface Enhanced
Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2009).

A. Taflove, S. C. Hagness, Computational Electrodynamics:
The Finite-Difference Time-Domain Method (Artech House, 2005).

S. G. Rodrigo, Optical Properties of Nanostructured
Metallic Systems (Springer, 2012).

J. Shibayama, K. Watanabe, R. Ando, J. Yamauchi, H. Nakano, "Simple frequency-dependent FDTD algorithm
for a Drude-critical points model," Proc. Asia-Pacific
Microw.Conf. (2012) pp. WE1D-4.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light
by Small Particles (Wiley, 2007).

M. Born, E. Wolf, Principles of Optics (Pergamon, 1980).

PMMA
Datasheet, MicroChem Corp. http://www.microchem.com.

COMSOL
Multiphysics v4.3a http://www.comsol.com.