Abstract

While plasmonic nano-antennas can produce intense electric fields in a very small area, in general, these devices cannot handle high power, because of their small footprints. In order to increase the maximum peak power that these devices can withstand, they can be driven by nano-second pulses from a larger diameter <i>Q</i>-switched laser, which reduces the fluence reaching the devices, thus avoiding their destruction. Furthermore, we show that an increase in the power density capacity of the nano-antennas can be achieved by replacing gold with titanium: more than 18 dB greater power density can be handled by titanium based nano-antennas without significant reduction in their electric field enhancement capabilities.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. P. Bharadwaj, B. Deutsch, L. Novotny, "Optical antennas," Adv. Opt. Photon. 1, 438-483 (2009).
  2. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Exp. 15, 13272-13281 (2007).
  3. H. T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, M. Premaratne, "Coupling of light from microdisk lasers into plasmonic nano-antennas," Opt. Exp. 17, 20878-20884 (2009).
  4. T. Kosako, Y. Kadoya, H. F. Hofmann, "Directional control of light by a nano-optical Yagi-Uda antenna," Nature Photon. 4, 312-315 (2010).
  5. T. H. Taminiau, F. D. Stefani, N. F. van Hulst, "Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna," Opt. Exp. 16, 10858-10866 (2008).
  6. C. Fumeaux, G. Boreman, W. Herrmann, H. Rothuizen, F. Kneubühl, "Polarization response of asymmetric-spiral infrared antennas," Appl. Opt. 36, 6485-6490 (1997).
  7. J. Alda, J. Rico-García, J. López-Alonso, G. Boreman, "Optical antennas for nano-photonic applications," Nanotechnology 16, S230-S234 (2005).
  8. F. González, G. Boreman, "Comparison of dipole, bowtie, spiral and log-period IR antennas," Infrared Phys. Technol. 146, 418-428 (2004).
  9. C. Middlebrook, P. Krenz, B. Lail, G. Boreman, "Infrared phased-array antenna," Microw. Opt. Technol. Lett. 50, 719-723 (2008).
  10. Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, C. Jagadish, "A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications," J. Phys. D: Appl. Phys. 45, 1-5 (2012).
  11. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, H. Altug, "High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy," Nano Lett. 10, 2511-2518 (2010).
  12. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. E. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nature Photon. 3, 654-657 (2010).
  13. B. Lahiri, R. Dylewicz, R. M. De La Rue, N. P. Johnson, "Impact of titanium adhesion layers on the response of metallic split-ring resonators (SRRs)," Opt. Exp. 18, 11202-11208 (2010).
  14. M. E. Fermann, A. Galvanauskas, G. Sucha, Ultrafast Lasers: Technology and Applications (Marcel Dekker, 2003) pp. 359-394.
  15. H. Sobral, M. Villagrán-Muniz, "Energy balance in laser ablation of metal targets," J. of Appl. Phys. 98, 083305 1-5- (2005).
  16. B. Kante, J.-M. Lourtioz, A. de Lustrac, "Infrared metafilms on a dielectric substrate," Phys. Rev. B 80, 205120 (2009).
  17. F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. de Lustrac, J.-M. Lourtioz, "Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon," Opt. Quantum Electron. 39, (2007).
  18. Fullwave 6.0 RSOFT Design Group (1999) http://www.rsoftdesign.com.
  19. Australian/New Zealand Standard AS/NZS 2211.1 2004- Safety of Laser Products.
  20. S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, C. R. C. Wang, "The shape transition of gold nanorods," Langmuir 15, 701-709 (1999).
  21. S. Link, C. Burda, B. Nikoobakht, M. A. El-Sayed, "How long does it take to melt a gold nanorod? A femtosecond pump-probe absorption spectroscopy study," Chem. Phys. Lett. 315, 12-18 (1999).
  22. COMSOL 4.0 Multiphysics (2012) http://www.comsol.com.

2012 (1)

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, C. Jagadish, "A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications," J. Phys. D: Appl. Phys. 45, 1-5 (2012).

2010 (4)

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, H. Altug, "High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy," Nano Lett. 10, 2511-2518 (2010).

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. E. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nature Photon. 3, 654-657 (2010).

B. Lahiri, R. Dylewicz, R. M. De La Rue, N. P. Johnson, "Impact of titanium adhesion layers on the response of metallic split-ring resonators (SRRs)," Opt. Exp. 18, 11202-11208 (2010).

T. Kosako, Y. Kadoya, H. F. Hofmann, "Directional control of light by a nano-optical Yagi-Uda antenna," Nature Photon. 4, 312-315 (2010).

2009 (3)

P. Bharadwaj, B. Deutsch, L. Novotny, "Optical antennas," Adv. Opt. Photon. 1, 438-483 (2009).

H. T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, M. Premaratne, "Coupling of light from microdisk lasers into plasmonic nano-antennas," Opt. Exp. 17, 20878-20884 (2009).

B. Kante, J.-M. Lourtioz, A. de Lustrac, "Infrared metafilms on a dielectric substrate," Phys. Rev. B 80, 205120 (2009).

2008 (2)

C. Middlebrook, P. Krenz, B. Lail, G. Boreman, "Infrared phased-array antenna," Microw. Opt. Technol. Lett. 50, 719-723 (2008).

T. H. Taminiau, F. D. Stefani, N. F. van Hulst, "Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna," Opt. Exp. 16, 10858-10866 (2008).

2007 (2)

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Exp. 15, 13272-13281 (2007).

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. de Lustrac, J.-M. Lourtioz, "Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon," Opt. Quantum Electron. 39, (2007).

2005 (2)

H. Sobral, M. Villagrán-Muniz, "Energy balance in laser ablation of metal targets," J. of Appl. Phys. 98, 083305 1-5- (2005).

J. Alda, J. Rico-García, J. López-Alonso, G. Boreman, "Optical antennas for nano-photonic applications," Nanotechnology 16, S230-S234 (2005).

2004 (1)

F. González, G. Boreman, "Comparison of dipole, bowtie, spiral and log-period IR antennas," Infrared Phys. Technol. 146, 418-428 (2004).

1999 (2)

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, C. R. C. Wang, "The shape transition of gold nanorods," Langmuir 15, 701-709 (1999).

S. Link, C. Burda, B. Nikoobakht, M. A. El-Sayed, "How long does it take to melt a gold nanorod? A femtosecond pump-probe absorption spectroscopy study," Chem. Phys. Lett. 315, 12-18 (1999).

1997 (1)

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Chem. Phys. Lett. (1)

S. Link, C. Burda, B. Nikoobakht, M. A. El-Sayed, "How long does it take to melt a gold nanorod? A femtosecond pump-probe absorption spectroscopy study," Chem. Phys. Lett. 315, 12-18 (1999).

Infrared Phys. Technol. (1)

F. González, G. Boreman, "Comparison of dipole, bowtie, spiral and log-period IR antennas," Infrared Phys. Technol. 146, 418-428 (2004).

J. of Appl. Phys. (1)

H. Sobral, M. Villagrán-Muniz, "Energy balance in laser ablation of metal targets," J. of Appl. Phys. 98, 083305 1-5- (2005).

J. Phys. D: Appl. Phys. (1)

Z. Li, H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, C. Jagadish, "A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications," J. Phys. D: Appl. Phys. 45, 1-5 (2012).

Langmuir (1)

S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, C. R. C. Wang, "The shape transition of gold nanorods," Langmuir 15, 701-709 (1999).

Microw. Opt. Technol. Lett. (1)

C. Middlebrook, P. Krenz, B. Lail, G. Boreman, "Infrared phased-array antenna," Microw. Opt. Technol. Lett. 50, 719-723 (2008).

Nano Lett. (1)

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, H. Altug, "High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy," Nano Lett. 10, 2511-2518 (2010).

Nanotechnology (1)

J. Alda, J. Rico-García, J. López-Alonso, G. Boreman, "Optical antennas for nano-photonic applications," Nanotechnology 16, S230-S234 (2005).

Nature Photon. (1)

T. Kosako, Y. Kadoya, H. F. Hofmann, "Directional control of light by a nano-optical Yagi-Uda antenna," Nature Photon. 4, 312-315 (2010).

Nature Photon. (1)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. E. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nature Photon. 3, 654-657 (2010).

Opt. Exp. (4)

B. Lahiri, R. Dylewicz, R. M. De La Rue, N. P. Johnson, "Impact of titanium adhesion layers on the response of metallic split-ring resonators (SRRs)," Opt. Exp. 18, 11202-11208 (2010).

T. H. Taminiau, F. D. Stefani, N. F. van Hulst, "Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna," Opt. Exp. 16, 10858-10866 (2008).

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Exp. 15, 13272-13281 (2007).

H. T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, M. Premaratne, "Coupling of light from microdisk lasers into plasmonic nano-antennas," Opt. Exp. 17, 20878-20884 (2009).

Opt. Quantum Electron. (1)

F. Gadot, B. Belier, A. Aassime, J. Mangeney, A. de Lustrac, J.-M. Lourtioz, "Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon," Opt. Quantum Electron. 39, (2007).

Phys. Rev. B (1)

B. Kante, J.-M. Lourtioz, A. de Lustrac, "Infrared metafilms on a dielectric substrate," Phys. Rev. B 80, 205120 (2009).

Other (4)

Fullwave 6.0 RSOFT Design Group (1999) http://www.rsoftdesign.com.

Australian/New Zealand Standard AS/NZS 2211.1 2004- Safety of Laser Products.

M. E. Fermann, A. Galvanauskas, G. Sucha, Ultrafast Lasers: Technology and Applications (Marcel Dekker, 2003) pp. 359-394.

COMSOL 4.0 Multiphysics (2012) http://www.comsol.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.