Abstract

We experimentally demonstrated a seamlessly integrated fiber-wireless system that delivers 30.67-Gb/s polarization division multiplexing-multiple input multiple output-orthogonal frequency division multiplexing (PDM-MIMO-OFDM) signal through 40-km fiber and 5-m wireless transmission over free-space at 100 GHz adopting heterodyne coherent detection. De-multiplexing is realized by channel estimation based on a pair of time-interleaved training sequences (TSs). The bit-error ratio (BER) for the 30.67-Gb/s PDM-MIMO-OFDM signal is less than the pre-forward-error-correction (pre-FEC) threshold of 3.8 × 10<sup>-3</sup> when the optical signal-to-noise ratio (OSNR) is larger than 19.3 dB after both 40-km single-mode fiber-28 (SMF-28) transmission and 5-m wireless delivery at 100 GHz. We also find that the BER performance is sensitive to the multipath effects induced by the transmission distance difference in the wireless link.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription