Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 31,
  • Issue 13,
  • pp. 2086-2098
  • (2013)

Photonic Transistor Design Principles for Switching Gain >=2

Not Accessible

Your library or personal account may give you access

Abstract

A novel two-staged photonic transistor with high operating speed, low switching power and high switching gain was recently proposed. Based on the manipulation of optical interference in an active directional coupler by optically controlled absorption and gain, two complementary device types were conceptually evaluated through the use of time domain technique showing ~105 times higher figure of merit compared to conventional approaches. With the joint usage of both device types, the photonic transistor could function as wavelength converter, pulse regenerator and logical operator. In this work, we identify the operational regimes of the photonic transistor that helps in reducing the footprint and operating intensities to achieve a switching gain of at least ~2 (or 3 dB). A recently proposed theoretical framework that calculates the spatial profiles of optical fields and complex permittivities seen by them in photonic structures with multiple active and passive sections is utilized for the purposes. We show that the operational intensity and wavelengths of interacting fields in the photonic transistor must be such that ɑ00 L1>=26 and g0L2 >= 3.2 to achieve a switchinggain >=2, where ɑ0=absorption coefficient of the short wavelength, g0= pumped medium gain coefficient seen by long wavelength beams, L1 = length of first stage and L2= length of second stage .

© 2013 IEEE

PDF Article
More Like This
Realization of ultrafast all-optical switching with switching gain in a single semiconductor waveguide

Yijing Chen, Vivek Krishnamurthy, Yicheng Lai, and Seng-Tiong Ho
Opt. Lett. 39(12) 3567-3570 (2014)

Controlling light by light: photonic crystal-based coherent all-optical transistor

A. Goodarzi and M. Ghanaatshoar
J. Opt. Soc. Am. B 33(8) 1594-1599 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved