Abstract

Two types of surface plasmon polariton waveguides consisting of square metal nanowires or nanotubes covered by low-high index dielectric layers are presented and their guiding characteristics are investigated numerically at the telecom wavelength of 1550 nm. Numerical analysis reveals that depending on the sizes of the covered low-high index dielectric layers, the nanowire based waveguides can be tuned to provide subwavelength confinement of the plasmonic modes with low propagation loss. Even enhanced optical confinement could be achieved by further increasing the nanowire size or replacing the metal nanowires by nanotubes. Consideration of directional coupling between two identical such plasmonic waveguides reveal ultra-low-crosstalk can be realized with relatively small separation distances. These waveguiding structures, compatible with modern fabrication methods, potentially enable the realization of numerous ultra-compact integrated photonic components.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. W. L. Barnes, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
  2. D. K. Gramotnev, S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photon. 4, 83-91 (2010).
  3. Z. H. Han, S. I. Bozhevolnyi, "Radiation guiding with surface plasmon polaritons," Reports Progr. Phys.. 76, (2013).
  4. J. Takahara, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).
  5. H. Ditlbacher, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, (2005).
  6. J. Jung, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, (2007).
  7. A. V. Krasavin, A. V. Zayats, "Guiding light at the nanoscale: Numerical optimization of ultrasubwavelength metallic wire plasmonic waveguides," Opt. Lett. 36, 3127-3129 (2011).
  8. G. Veronis, S. H. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005).
  9. L. Liu, "Novel surface plasmon waveguide for high integration," Opt. Exp. 13, 6645-6650 (2005).
  10. D. F. P. Pile, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, (2005).
  11. D. F. P. Pile, D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004).
  12. S. I. Bozhevolnyi, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
  13. E. Moreno, "Channel plasmon-polaritons: Modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).
  14. D. F. P. Pile, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).
  15. E. Moreno, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008).
  16. A. Boltasseva, "Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths," Opt. Exp. 16, 5252-5260 (2008).
  17. R. Zia, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Amer. A 21, 2442-2446 (2004).
  18. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).
  19. R. Charbonneau, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Exp. 13, 977-984 (2005).
  20. A. Boltasseva, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightw. Technol. 23, 413-422 (2005).
  21. B. Steinberger, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).
  22. T. Holmgaard, S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Phys. Rev. B 75, (2007).
  23. A. V. Krasavin, A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, (2007).
  24. A. V. Krasavin, A. V. Zayats, "Silicon-based plasmonic waveguides," Opt. Exp. 18, 11791-11799 (2010).
  25. A. Degiron, "Simulations of hybrid long-range plasmon modes with application to 90 degrees bends," Opt. Lett. 32, 2354-2356 (2007).
  26. R. Adato, J. Guo, "Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers," J. Appl. Phys. 105, (2009).
  27. Y. Binfeng, "Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides," Opt. Exp. 17, 3610-8 (2009).
  28. J. J. Chen, "Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides," Opt. Exp. 17, 23603-23609 (2009).
  29. Y. S. Bian, "Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration," Opt. Express 17, 21320-21325 (2009).
  30. B. F. Yun, "Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity," J. Opt. Soc. Amer. B 26, 1924-1929 (2009).
  31. L. Chen, "A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration," J. Lightw. Technol. 30, 163-168 (2012).
  32. G. X. Cai, "A slot-based surface plasmon-polariton waveguide with long-range propagation and superconfinement," IEEE Photon. J. 4, 844-855 (2012).
  33. T. Holmgaard, "Long-range dielectric-loaded surface plasmon-polariton waveguides," Opt. Exp. 18, 23009-23015 (2010).
  34. J. Gosciniak, "Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides," J. Lightw. Technol. 29, 1473-1481 (2011).
  35. V. S. Volkov, "Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths," Opt. Lett. 36, 4278-4280 (2011).
  36. R. F. Oulton, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photon. 2, 496-500 (2008).
  37. M. Fujii, "Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides," IEEE Photon. Technol. Lett. 21, 362-364 (2009).
  38. D. X. Dai, S. L. He, "A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement," Opt. Exp. 17, 16646-16653 (2009).
  39. Y. S. Zhao, L. Zhu, "Coaxial hybrid plasmonic nanowire waveguides," J. Opt. Soc. Amer. B 27, 1260-1265 (2010).
  40. Y. S. Bian, "Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement," Opt. Exp. 18, 23756-23762 (2010).
  41. J. T. Kim, "CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration," IEEE Photon. Technol. Lett. 23, 206-208 (2011).
  42. Y. Kou, "Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration," Opt. Exp. 19, 11746-11752 (2011).
  43. S. Y. Zhu, "Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits," Appl. Physics Lett. 98, 021107 (2011).
  44. C. Horvath, "Polymer hybrid plasmonic waveguides and microring resonators," IEEE Photon. Technol. Lett. 23, 1267-1269 (2011).
  45. Y. S. Bian, "Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement," Optics Express 19, 22417-22422 (2011).
  46. C. C. Huang, "Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement," IEEE J. Sel. Topics Quantum Electron. .
  47. C.-L. Zou, "Movable fiber-integrated hybrid plasmonic waveguide on metal film," IEEE Photon. Technol. Lett. 24, 434-436 (2012).
  48. Y. S. Bian, "Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale," IEEE Photon. Technol. Lett. 24, 1279-1281 (2012).
  49. Y. S. Bian, "Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550 nm," IEEE J. Sel. Topics Quantum Electron. 19, 4800106 (2013).
  50. Y. N. Xia, "One-dimensional nanostructures: Synthesis, characterization, and applications," Adv. Mater. 15, 353-389 (2003).
  51. T. Kijima, "Noble-metal nanotubes (Pt, Pd, Ag) from lyotropic mixed-surfactant liquid-crystal templates," Angewandte Chemie-International Edition 43, 228-232 (2004).
  52. D. X. Dai, S. L. He, "Low-loss hybrid plasmonic waveguide with double low-index nano-slots," Opt. Exp. 18, 17958-17966 (2010).
  53. P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
  54. V. J. Sorger, "Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales," Nat. Commun. 2, 331 (2011).
  55. R. F. Oulton, "Confinement and propagation characteristics of subwavelength plasmonic modes," New J. Phys. 10, 105018 (2008).
  56. R. Buckley, P. Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes," Opt. Exp. 15, 12174-12182 (2007).
  57. M. J. Lagos, "Observation of the smallest metal nanotube with a square cross-section," Nature Nanotechnol. 4, 149-152 (2009).
  58. G. Veronis, S. H. Fan, "Crosstalk between three-dimensional plasmonic slot waveguides," Opt. Exp. 16, 2129-2140 (2008).

2013 (2)

Z. H. Han, S. I. Bozhevolnyi, "Radiation guiding with surface plasmon polaritons," Reports Progr. Phys.. 76, (2013).

Y. S. Bian, "Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550 nm," IEEE J. Sel. Topics Quantum Electron. 19, 4800106 (2013).

2012 (4)

C.-L. Zou, "Movable fiber-integrated hybrid plasmonic waveguide on metal film," IEEE Photon. Technol. Lett. 24, 434-436 (2012).

Y. S. Bian, "Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale," IEEE Photon. Technol. Lett. 24, 1279-1281 (2012).

L. Chen, "A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration," J. Lightw. Technol. 30, 163-168 (2012).

G. X. Cai, "A slot-based surface plasmon-polariton waveguide with long-range propagation and superconfinement," IEEE Photon. J. 4, 844-855 (2012).

2011 (9)

J. Gosciniak, "Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides," J. Lightw. Technol. 29, 1473-1481 (2011).

V. S. Volkov, "Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths," Opt. Lett. 36, 4278-4280 (2011).

A. V. Krasavin, A. V. Zayats, "Guiding light at the nanoscale: Numerical optimization of ultrasubwavelength metallic wire plasmonic waveguides," Opt. Lett. 36, 3127-3129 (2011).

J. T. Kim, "CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration," IEEE Photon. Technol. Lett. 23, 206-208 (2011).

Y. Kou, "Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration," Opt. Exp. 19, 11746-11752 (2011).

S. Y. Zhu, "Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits," Appl. Physics Lett. 98, 021107 (2011).

C. Horvath, "Polymer hybrid plasmonic waveguides and microring resonators," IEEE Photon. Technol. Lett. 23, 1267-1269 (2011).

Y. S. Bian, "Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement," Optics Express 19, 22417-22422 (2011).

V. J. Sorger, "Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales," Nat. Commun. 2, 331 (2011).

2010 (6)

D. X. Dai, S. L. He, "Low-loss hybrid plasmonic waveguide with double low-index nano-slots," Opt. Exp. 18, 17958-17966 (2010).

Y. S. Zhao, L. Zhu, "Coaxial hybrid plasmonic nanowire waveguides," J. Opt. Soc. Amer. B 27, 1260-1265 (2010).

Y. S. Bian, "Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement," Opt. Exp. 18, 23756-23762 (2010).

D. K. Gramotnev, S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photon. 4, 83-91 (2010).

T. Holmgaard, "Long-range dielectric-loaded surface plasmon-polariton waveguides," Opt. Exp. 18, 23009-23015 (2010).

A. V. Krasavin, A. V. Zayats, "Silicon-based plasmonic waveguides," Opt. Exp. 18, 11791-11799 (2010).

2009 (8)

M. Fujii, "Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides," IEEE Photon. Technol. Lett. 21, 362-364 (2009).

D. X. Dai, S. L. He, "A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement," Opt. Exp. 17, 16646-16653 (2009).

R. Adato, J. Guo, "Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers," J. Appl. Phys. 105, (2009).

Y. Binfeng, "Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides," Opt. Exp. 17, 3610-8 (2009).

J. J. Chen, "Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides," Opt. Exp. 17, 23603-23609 (2009).

Y. S. Bian, "Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration," Opt. Express 17, 21320-21325 (2009).

B. F. Yun, "Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity," J. Opt. Soc. Amer. B 26, 1924-1929 (2009).

M. J. Lagos, "Observation of the smallest metal nanotube with a square cross-section," Nature Nanotechnol. 4, 149-152 (2009).

2008 (5)

G. Veronis, S. H. Fan, "Crosstalk between three-dimensional plasmonic slot waveguides," Opt. Exp. 16, 2129-2140 (2008).

R. F. Oulton, "Confinement and propagation characteristics of subwavelength plasmonic modes," New J. Phys. 10, 105018 (2008).

R. F. Oulton, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photon. 2, 496-500 (2008).

E. Moreno, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008).

A. Boltasseva, "Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths," Opt. Exp. 16, 5252-5260 (2008).

2007 (5)

J. Jung, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, (2007).

A. Degiron, "Simulations of hybrid long-range plasmon modes with application to 90 degrees bends," Opt. Lett. 32, 2354-2356 (2007).

T. Holmgaard, S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Phys. Rev. B 75, (2007).

A. V. Krasavin, A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, (2007).

R. Buckley, P. Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes," Opt. Exp. 15, 12174-12182 (2007).

2006 (3)

B. Steinberger, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).

S. I. Bozhevolnyi, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).

E. Moreno, "Channel plasmon-polaritons: Modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006).

2005 (7)

D. F. P. Pile, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).

H. Ditlbacher, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, (2005).

G. Veronis, S. H. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005).

L. Liu, "Novel surface plasmon waveguide for high integration," Opt. Exp. 13, 6645-6650 (2005).

D. F. P. Pile, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, (2005).

R. Charbonneau, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Exp. 13, 977-984 (2005).

A. Boltasseva, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightw. Technol. 23, 413-422 (2005).

2004 (3)

D. F. P. Pile, D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004).

R. Zia, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Amer. A 21, 2442-2446 (2004).

T. Kijima, "Noble-metal nanotubes (Pt, Pd, Ag) from lyotropic mixed-surfactant liquid-crystal templates," Angewandte Chemie-International Edition 43, 228-232 (2004).

2003 (2)

Y. N. Xia, "One-dimensional nanostructures: Synthesis, characterization, and applications," Adv. Mater. 15, 353-389 (2003).

W. L. Barnes, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).

2000 (1)

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).

1997 (1)

J. Takahara, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).

1972 (1)

P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

Adv. Mater. (1)

Y. N. Xia, "One-dimensional nanostructures: Synthesis, characterization, and applications," Adv. Mater. 15, 353-389 (2003).

Angewandte Chemie-International Edition (1)

T. Kijima, "Noble-metal nanotubes (Pt, Pd, Ag) from lyotropic mixed-surfactant liquid-crystal templates," Angewandte Chemie-International Edition 43, 228-232 (2004).

Appl. Phys. Lett. (1)

D. F. P. Pile, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, (2005).

Appl. Phys. Lett. (1)

B. Steinberger, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).

Appl. Phys. Lett. (2)

A. V. Krasavin, A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, (2007).

D. F. P. Pile, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87, 061106 (2005).

Appl. Physics Lett. (1)

S. Y. Zhu, "Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits," Appl. Physics Lett. 98, 021107 (2011).

IEEE J. Sel. Topics Quantum Electron. (2)

C. C. Huang, "Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement," IEEE J. Sel. Topics Quantum Electron. .

Y. S. Bian, "Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550 nm," IEEE J. Sel. Topics Quantum Electron. 19, 4800106 (2013).

IEEE Photon. Technol. Lett. (2)

C.-L. Zou, "Movable fiber-integrated hybrid plasmonic waveguide on metal film," IEEE Photon. Technol. Lett. 24, 434-436 (2012).

Y. S. Bian, "Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale," IEEE Photon. Technol. Lett. 24, 1279-1281 (2012).

IEEE Photon. J. (1)

G. X. Cai, "A slot-based surface plasmon-polariton waveguide with long-range propagation and superconfinement," IEEE Photon. J. 4, 844-855 (2012).

IEEE Photon. Technol. Lett. (3)

C. Horvath, "Polymer hybrid plasmonic waveguides and microring resonators," IEEE Photon. Technol. Lett. 23, 1267-1269 (2011).

M. Fujii, "Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides," IEEE Photon. Technol. Lett. 21, 362-364 (2009).

J. T. Kim, "CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration," IEEE Photon. Technol. Lett. 23, 206-208 (2011).

J. Lightw. Technol. (1)

A. Boltasseva, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightw. Technol. 23, 413-422 (2005).

J. Opt. Soc. Amer. A (1)

R. Zia, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Amer. A 21, 2442-2446 (2004).

J. Appl. Phys. (1)

R. Adato, J. Guo, "Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers," J. Appl. Phys. 105, (2009).

J. Lightw. Technol. (2)

L. Chen, "A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration," J. Lightw. Technol. 30, 163-168 (2012).

J. Gosciniak, "Theoretical analysis of long-range dielectric-loaded surface plasmon polariton waveguides," J. Lightw. Technol. 29, 1473-1481 (2011).

J. Opt. Soc. Amer. B (1)

Y. S. Zhao, L. Zhu, "Coaxial hybrid plasmonic nanowire waveguides," J. Opt. Soc. Amer. B 27, 1260-1265 (2010).

J. Opt. Soc. Amer. B (1)

B. F. Yun, "Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity," J. Opt. Soc. Amer. B 26, 1924-1929 (2009).

Nat. Commun. (1)

V. J. Sorger, "Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales," Nat. Commun. 2, 331 (2011).

Nat. Photon. (2)

R. F. Oulton, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nat. Photon. 2, 496-500 (2008).

D. K. Gramotnev, S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photon. 4, 83-91 (2010).

Nature (2)

W. L. Barnes, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).

S. I. Bozhevolnyi, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).

Nature Nanotechnol. (1)

M. J. Lagos, "Observation of the smallest metal nanotube with a square cross-section," Nature Nanotechnol. 4, 149-152 (2009).

New J. Phys. (1)

R. F. Oulton, "Confinement and propagation characteristics of subwavelength plasmonic modes," New J. Phys. 10, 105018 (2008).

Opt. Exp. (5)

R. Buckley, P. Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes," Opt. Exp. 15, 12174-12182 (2007).

Y. S. Bian, "Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement," Opt. Exp. 18, 23756-23762 (2010).

Y. Kou, "Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration," Opt. Exp. 19, 11746-11752 (2011).

D. X. Dai, S. L. He, "A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement," Opt. Exp. 17, 16646-16653 (2009).

T. Holmgaard, "Long-range dielectric-loaded surface plasmon-polariton waveguides," Opt. Exp. 18, 23009-23015 (2010).

Opt. Lett. (3)

D. F. P. Pile, D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004).

G. Veronis, S. H. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005).

J. Takahara, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997).

Opt. Exp. (8)

L. Liu, "Novel surface plasmon waveguide for high integration," Opt. Exp. 13, 6645-6650 (2005).

A. Boltasseva, "Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths," Opt. Exp. 16, 5252-5260 (2008).

Y. Binfeng, "Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides," Opt. Exp. 17, 3610-8 (2009).

J. J. Chen, "Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides," Opt. Exp. 17, 23603-23609 (2009).

R. Charbonneau, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Exp. 13, 977-984 (2005).

A. V. Krasavin, A. V. Zayats, "Silicon-based plasmonic waveguides," Opt. Exp. 18, 11791-11799 (2010).

D. X. Dai, S. L. He, "Low-loss hybrid plasmonic waveguide with double low-index nano-slots," Opt. Exp. 18, 17958-17966 (2010).

G. Veronis, S. H. Fan, "Crosstalk between three-dimensional plasmonic slot waveguides," Opt. Exp. 16, 2129-2140 (2008).

Opt. Express (1)

Opt. Lett. (4)

Optics Express (1)

Y. S. Bian, "Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement," Optics Express 19, 22417-22422 (2011).

Phys. Rev. B (1)

T. Holmgaard, S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Phys. Rev. B 75, (2007).

Phys. Rev. B (3)

P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).

J. Jung, "Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding," Phys. Rev. B 76, (2007).

P. B. Johnson, R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).

Phys. Rev. Lett. (2)

H. Ditlbacher, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, (2005).

E. Moreno, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett. 100, 023901 (2008).

Reports Progr. Phys.. (1)

Z. H. Han, S. I. Bozhevolnyi, "Radiation guiding with surface plasmon polaritons," Reports Progr. Phys.. 76, (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.