Abstract

Flexible polymer waveguides with integrated 45° mirrors to support surface normal optical coupling for optical interconnection were fabricated using a vacuum assisted microfluidic (VAM) soft lithographic technique. Waveguide array structures with slanted surfaces of the SU-8 master were realized by prism-assisted inclined UV lithography. The internal surface reflected UV light was utilized to eliminate undercut structures and to form the inclined surfaces on both ends of the straight waveguide structure via one-step UV exposure. Varying the inclined surface depth can result in different needed light coupling efficiency. A polydimethylsiloxane (PDMS) mold was subsequently created. The use of UV curable resins in the VAM fabrication resulted in the polymer waveguides with 45° integrated mirrors, demonstrating a coupling efficiency of 75% for full mirrors and 38% for half mirrors.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, J. A. Kash, "160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers," IEEE Trans. Adv. Packag. 32, 345-359 (2009).
  2. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, R. T. Chen, "Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects," J. Lightw. Technol. 22, 2168-2176 (2004).
  3. L. Wang, X. Wang, W. Jiang, J. Choi, H. Bi, R. T. Chen, "45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects," Appl. Phys. Lett. 87, 141110 (2005).
  4. N. Bamiedakis, J. Beals, IVR. V. Penty, I. H. White, J. V. DeGroot, T. V. Clapp, "Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects," IEEE J. Quantum Electron. 45, 415-424 (2009).
  5. X. Lin, A. Hosseini, X. Dou, H. Subbaraman, R. T. Chen, "Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler," Opt. Exp. 21, 60-69 (2013).
  6. X. Dou, X. Wang, H. Huang, X. Lin, D. Ding, D. Z. Pan, R. T. Chen, "Polymeric waveguides with embedded micromirrors formed by Metallic Hard Mold," Opt. Exp. 18, 378-385 (2010).
  7. A. L. Glebov, M. G. Lee, K. Yokouchi, "Integration technologies for pluggable backplane optical interconnect systems," Opt. Eng. 46, 015403 (2007).
  8. A. Flores, S. Song, J. J. Yang, Z. Liu, M. R. Wang, "High-speed optical interconnect coupler based on soft lithography ribbons," J. Lightw. Technol. 26, 1956-1963 (2008).
  9. M. Kagami, A. Kawasaki, H. Ito, "A polymer optical waveguide with out-of-plane branching mirrors for surface-normal optical interconnections," J. Lightw. Technol. 19, 1949-1955 (2001).
  10. X. Dou, X. Wang, X. Lin, D. Ding, D. Z. Pan, R. T. Chen, "Highly flexible polymeric optical waveguide for out-of-plane optical interconnects," Opt. Expr. 18, 16227-16223 (2010).
  11. X. Wang, W. Jiang, L. Wang, H. Bi, R. T. Chen, "Fully embedded board-level optical interconnects from waveguide fabrication to devices integration," J. Lightw. Technol. 26, 243-250 (2008).
  12. X. Dou, A. X. Wang, X. Lin, R. T. Chen, "Photolithography-free polymer optical waveguide arrays for optical backplane bus," Opt. Exp. 19, 14403-14410 (2011).
  13. M. Immonen, M. Karppinen, J. K. Kivilahti, "Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects," IEEE Trans. Electron. Packag. Manuf. 28, 304-311 (2005).
  14. W. Lee, S. H. Hwang, M. J. Kim, E. J. Jung, J. B. An, G. W. Kim, M. Y. Jeong, B. S. Rho, "Multilayered 3-D optical circuit with mirror-embedded waveguide film," IEEE Photon. Technol. Lett. 24, 1179-1181 (2012).
  15. W. Lee, S. H. Hwang, J. W. Lim, B. S. Rho, "Polymeric waveguide film with embedded mirror for multilayer optical circuits," IEEE Photon. Technol. Lett. 21, 12-14 (2009).
  16. T. Yoshimura, M. Miyazaki, Y. Miyamoto, N. Shimoda, A. Hori, K. Asama, "Three-Dimensional optical circuits consisting of waveguide films and optical Z-connections," J. Lightw. Technol. 24, 4345-4351 (2006).
  17. M. Hikita, R. Yoshimura, M. Usui, S. Tomaru, S. Imamura, "Polymeric optical waveguides for optical interconnections," The Solid Films 331, 303-308 (1998).
  18. G. V. Steenberge, P. Geerinck, S. V. Put, J. V. Koetsem, H. Ottevaere, D. Morlion, H. Thienpont, P. Van Daele, "MT-compatible laser-ablated interconnections for optical printed circuit boards," J. Lightw. Technol. 22, 2083-2090 (2004).
  19. N. Hendrickx, J. V. Erps, E. Bosman, C. Debaes, H. Thienpont, P. V. Daele, "Embedded micromirror inserts for optical printed circuit boards," IEEE Photon. Technol. Lett. 20, 1727-1729 (2008).
  20. F. Wang, F. Liu, A. Adibi, "45 degree polymer micromirror integration for board-level three-dimensional optical interconnects," Opt. Express 17, 10514-10521 (2009).
  21. J. Inoue, T. Ogura, K. Kintaka, K. Nishio, Y. Awatsuji, S. Ura, "Fabrication of embedded 45-degree micromirror using liquid-immersion exposure for single-mode optical waveguides," J. Lightw. Technol. 30, 1563-1568 (2012).
  22. M. Han, D. H. Hyun, H. H. Park, S. S. Lee, C. H. Kim, C. G. Kim, "A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer," J. Micromech. Microeng. 17, 1174-1191 (2007).
  23. K. Y. Hung, H. T. Hu, F. G. Tseng, "Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head," J. Micromech. Microeng. 14, 975-983 (2004).
  24. G. Jiang, S. Baig, M. R. Wang, "Prism-assisted inclined UV lithography for 3D microstructures fabrication," J. Micromech. Microeng. 22, 085022 (2012).
  25. A. Flores, S. Song, S. Baig, M. R. Wang, "Vacuum-assisted microfluidic technique for fabrication of guided wave devices," IEEE Photon. Technol. Lett. 20, 1246-1248 (2008).
  26. A. Fujii, T. Suzuki, K. Shimizu, K. Yatsuda, M. Igusa, S. Ohtsu, E. Akutsu, "A novel fabrication technology of a polymer optical waveguide and its application," Proc. SPIE (2007) pp. 677506.
  27. S. J. Ahn, J. Moon, "Vacuum-assisted microfluidic technique for fabrication of guided wave devices," J. Am. Ceram. Soc. 88, 1171-1174 (2005).
  28. Y. Yoon, J. Park, M. G. Allen, "Multidirectional UV lithography for complex 3-D MEMS structures," J. Microelectromech. Syst. 15, 1121-1130 (2006).
  29. G. Jiang, S. Baig, M. R. Wang, "Soft lithography fabricated polymer waveguides and 45-degree inclined mirrors for card-to-backplane optical interconnects," Proc. SPIE (2012) pp. 82670R.
  30. U. Levy, R. Shamai, "Tunable optofluidic devices," Microfluid. Nanofluid 4, 97-105 (2008).

2013

X. Lin, A. Hosseini, X. Dou, H. Subbaraman, R. T. Chen, "Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler," Opt. Exp. 21, 60-69 (2013).

2012

W. Lee, S. H. Hwang, M. J. Kim, E. J. Jung, J. B. An, G. W. Kim, M. Y. Jeong, B. S. Rho, "Multilayered 3-D optical circuit with mirror-embedded waveguide film," IEEE Photon. Technol. Lett. 24, 1179-1181 (2012).

J. Inoue, T. Ogura, K. Kintaka, K. Nishio, Y. Awatsuji, S. Ura, "Fabrication of embedded 45-degree micromirror using liquid-immersion exposure for single-mode optical waveguides," J. Lightw. Technol. 30, 1563-1568 (2012).

G. Jiang, S. Baig, M. R. Wang, "Prism-assisted inclined UV lithography for 3D microstructures fabrication," J. Micromech. Microeng. 22, 085022 (2012).

2011

X. Dou, A. X. Wang, X. Lin, R. T. Chen, "Photolithography-free polymer optical waveguide arrays for optical backplane bus," Opt. Exp. 19, 14403-14410 (2011).

2010

X. Dou, X. Wang, X. Lin, D. Ding, D. Z. Pan, R. T. Chen, "Highly flexible polymeric optical waveguide for out-of-plane optical interconnects," Opt. Expr. 18, 16227-16223 (2010).

X. Dou, X. Wang, H. Huang, X. Lin, D. Ding, D. Z. Pan, R. T. Chen, "Polymeric waveguides with embedded micromirrors formed by Metallic Hard Mold," Opt. Exp. 18, 378-385 (2010).

2009

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, J. A. Kash, "160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers," IEEE Trans. Adv. Packag. 32, 345-359 (2009).

N. Bamiedakis, J. Beals, IVR. V. Penty, I. H. White, J. V. DeGroot, T. V. Clapp, "Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects," IEEE J. Quantum Electron. 45, 415-424 (2009).

W. Lee, S. H. Hwang, J. W. Lim, B. S. Rho, "Polymeric waveguide film with embedded mirror for multilayer optical circuits," IEEE Photon. Technol. Lett. 21, 12-14 (2009).

F. Wang, F. Liu, A. Adibi, "45 degree polymer micromirror integration for board-level three-dimensional optical interconnects," Opt. Express 17, 10514-10521 (2009).

2008

A. Flores, S. Song, S. Baig, M. R. Wang, "Vacuum-assisted microfluidic technique for fabrication of guided wave devices," IEEE Photon. Technol. Lett. 20, 1246-1248 (2008).

U. Levy, R. Shamai, "Tunable optofluidic devices," Microfluid. Nanofluid 4, 97-105 (2008).

N. Hendrickx, J. V. Erps, E. Bosman, C. Debaes, H. Thienpont, P. V. Daele, "Embedded micromirror inserts for optical printed circuit boards," IEEE Photon. Technol. Lett. 20, 1727-1729 (2008).

X. Wang, W. Jiang, L. Wang, H. Bi, R. T. Chen, "Fully embedded board-level optical interconnects from waveguide fabrication to devices integration," J. Lightw. Technol. 26, 243-250 (2008).

A. Flores, S. Song, J. J. Yang, Z. Liu, M. R. Wang, "High-speed optical interconnect coupler based on soft lithography ribbons," J. Lightw. Technol. 26, 1956-1963 (2008).

2007

A. L. Glebov, M. G. Lee, K. Yokouchi, "Integration technologies for pluggable backplane optical interconnect systems," Opt. Eng. 46, 015403 (2007).

M. Han, D. H. Hyun, H. H. Park, S. S. Lee, C. H. Kim, C. G. Kim, "A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer," J. Micromech. Microeng. 17, 1174-1191 (2007).

2006

Y. Yoon, J. Park, M. G. Allen, "Multidirectional UV lithography for complex 3-D MEMS structures," J. Microelectromech. Syst. 15, 1121-1130 (2006).

T. Yoshimura, M. Miyazaki, Y. Miyamoto, N. Shimoda, A. Hori, K. Asama, "Three-Dimensional optical circuits consisting of waveguide films and optical Z-connections," J. Lightw. Technol. 24, 4345-4351 (2006).

2005

M. Immonen, M. Karppinen, J. K. Kivilahti, "Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects," IEEE Trans. Electron. Packag. Manuf. 28, 304-311 (2005).

L. Wang, X. Wang, W. Jiang, J. Choi, H. Bi, R. T. Chen, "45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects," Appl. Phys. Lett. 87, 141110 (2005).

S. J. Ahn, J. Moon, "Vacuum-assisted microfluidic technique for fabrication of guided wave devices," J. Am. Ceram. Soc. 88, 1171-1174 (2005).

2004

K. Y. Hung, H. T. Hu, F. G. Tseng, "Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head," J. Micromech. Microeng. 14, 975-983 (2004).

G. V. Steenberge, P. Geerinck, S. V. Put, J. V. Koetsem, H. Ottevaere, D. Morlion, H. Thienpont, P. Van Daele, "MT-compatible laser-ablated interconnections for optical printed circuit boards," J. Lightw. Technol. 22, 2083-2090 (2004).

C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, R. T. Chen, "Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects," J. Lightw. Technol. 22, 2168-2176 (2004).

2001

M. Kagami, A. Kawasaki, H. Ito, "A polymer optical waveguide with out-of-plane branching mirrors for surface-normal optical interconnections," J. Lightw. Technol. 19, 1949-1955 (2001).

1998

M. Hikita, R. Yoshimura, M. Usui, S. Tomaru, S. Imamura, "Polymeric optical waveguides for optical interconnections," The Solid Films 331, 303-308 (1998).

Appl. Phys. Lett.

L. Wang, X. Wang, W. Jiang, J. Choi, H. Bi, R. T. Chen, "45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects," Appl. Phys. Lett. 87, 141110 (2005).

IEEE J. Quantum Electron.

N. Bamiedakis, J. Beals, IVR. V. Penty, I. H. White, J. V. DeGroot, T. V. Clapp, "Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects," IEEE J. Quantum Electron. 45, 415-424 (2009).

IEEE Photon. Technol. Lett.

W. Lee, S. H. Hwang, M. J. Kim, E. J. Jung, J. B. An, G. W. Kim, M. Y. Jeong, B. S. Rho, "Multilayered 3-D optical circuit with mirror-embedded waveguide film," IEEE Photon. Technol. Lett. 24, 1179-1181 (2012).

W. Lee, S. H. Hwang, J. W. Lim, B. S. Rho, "Polymeric waveguide film with embedded mirror for multilayer optical circuits," IEEE Photon. Technol. Lett. 21, 12-14 (2009).

N. Hendrickx, J. V. Erps, E. Bosman, C. Debaes, H. Thienpont, P. V. Daele, "Embedded micromirror inserts for optical printed circuit boards," IEEE Photon. Technol. Lett. 20, 1727-1729 (2008).

A. Flores, S. Song, S. Baig, M. R. Wang, "Vacuum-assisted microfluidic technique for fabrication of guided wave devices," IEEE Photon. Technol. Lett. 20, 1246-1248 (2008).

IEEE Trans. Adv. Packag.

F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, J. A. Kash, "160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers," IEEE Trans. Adv. Packag. 32, 345-359 (2009).

IEEE Trans. Electron. Packag. Manuf.

M. Immonen, M. Karppinen, J. K. Kivilahti, "Fabrication and characterization of polymer optical waveguides with integrated micromirrors for three-dimensional board-level optical interconnects," IEEE Trans. Electron. Packag. Manuf. 28, 304-311 (2005).

J. Am. Ceram. Soc.

S. J. Ahn, J. Moon, "Vacuum-assisted microfluidic technique for fabrication of guided wave devices," J. Am. Ceram. Soc. 88, 1171-1174 (2005).

J. Lightw. Technol.

J. Inoue, T. Ogura, K. Kintaka, K. Nishio, Y. Awatsuji, S. Ura, "Fabrication of embedded 45-degree micromirror using liquid-immersion exposure for single-mode optical waveguides," J. Lightw. Technol. 30, 1563-1568 (2012).

G. V. Steenberge, P. Geerinck, S. V. Put, J. V. Koetsem, H. Ottevaere, D. Morlion, H. Thienpont, P. Van Daele, "MT-compatible laser-ablated interconnections for optical printed circuit boards," J. Lightw. Technol. 22, 2083-2090 (2004).

X. Wang, W. Jiang, L. Wang, H. Bi, R. T. Chen, "Fully embedded board-level optical interconnects from waveguide fabrication to devices integration," J. Lightw. Technol. 26, 243-250 (2008).

T. Yoshimura, M. Miyazaki, Y. Miyamoto, N. Shimoda, A. Hori, K. Asama, "Three-Dimensional optical circuits consisting of waveguide films and optical Z-connections," J. Lightw. Technol. 24, 4345-4351 (2006).

C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, R. T. Chen, "Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects," J. Lightw. Technol. 22, 2168-2176 (2004).

A. Flores, S. Song, J. J. Yang, Z. Liu, M. R. Wang, "High-speed optical interconnect coupler based on soft lithography ribbons," J. Lightw. Technol. 26, 1956-1963 (2008).

M. Kagami, A. Kawasaki, H. Ito, "A polymer optical waveguide with out-of-plane branching mirrors for surface-normal optical interconnections," J. Lightw. Technol. 19, 1949-1955 (2001).

J. Microelectromech. Syst.

Y. Yoon, J. Park, M. G. Allen, "Multidirectional UV lithography for complex 3-D MEMS structures," J. Microelectromech. Syst. 15, 1121-1130 (2006).

J. Micromech. Microeng.

M. Han, D. H. Hyun, H. H. Park, S. S. Lee, C. H. Kim, C. G. Kim, "A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer," J. Micromech. Microeng. 17, 1174-1191 (2007).

K. Y. Hung, H. T. Hu, F. G. Tseng, "Application of 3D glycerol-compensated inclined-exposure technology to an integrated optical pick-up head," J. Micromech. Microeng. 14, 975-983 (2004).

G. Jiang, S. Baig, M. R. Wang, "Prism-assisted inclined UV lithography for 3D microstructures fabrication," J. Micromech. Microeng. 22, 085022 (2012).

Microfluid. Nanofluid

U. Levy, R. Shamai, "Tunable optofluidic devices," Microfluid. Nanofluid 4, 97-105 (2008).

Opt. Eng.

A. L. Glebov, M. G. Lee, K. Yokouchi, "Integration technologies for pluggable backplane optical interconnect systems," Opt. Eng. 46, 015403 (2007).

Opt. Exp.

X. Dou, A. X. Wang, X. Lin, R. T. Chen, "Photolithography-free polymer optical waveguide arrays for optical backplane bus," Opt. Exp. 19, 14403-14410 (2011).

X. Lin, A. Hosseini, X. Dou, H. Subbaraman, R. T. Chen, "Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler," Opt. Exp. 21, 60-69 (2013).

X. Dou, X. Wang, H. Huang, X. Lin, D. Ding, D. Z. Pan, R. T. Chen, "Polymeric waveguides with embedded micromirrors formed by Metallic Hard Mold," Opt. Exp. 18, 378-385 (2010).

Opt. Expr.

X. Dou, X. Wang, X. Lin, D. Ding, D. Z. Pan, R. T. Chen, "Highly flexible polymeric optical waveguide for out-of-plane optical interconnects," Opt. Expr. 18, 16227-16223 (2010).

Opt. Express

The Solid Films

M. Hikita, R. Yoshimura, M. Usui, S. Tomaru, S. Imamura, "Polymeric optical waveguides for optical interconnections," The Solid Films 331, 303-308 (1998).

Other

G. Jiang, S. Baig, M. R. Wang, "Soft lithography fabricated polymer waveguides and 45-degree inclined mirrors for card-to-backplane optical interconnects," Proc. SPIE (2012) pp. 82670R.

A. Fujii, T. Suzuki, K. Shimizu, K. Yatsuda, M. Igusa, S. Ohtsu, E. Akutsu, "A novel fabrication technology of a polymer optical waveguide and its application," Proc. SPIE (2007) pp. 677506.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.