Abstract

We report the first mode-locked, thulium-doped fiber figure-eight laser. The mode-locked oscillator produces 1.5-ps pulses with 63 pJ of pulse energy at a 10.4-MHz repetition rate with a 3-nm bandwidth at a center wavelength of 2034 nm. After amplification, the pulses are compressed to 370 fs with ~50 nJ of pulse energy. The oscillator can also operate in a square pulse regime, yielding stable pulses from ~100 ps to 20 ns long with ~100 nJ per pulse after amplification.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, W. E. White, "New source technologies and their impact on future light sources," Nucl. Instr. Meth. Phys. Res. A 622, 657-668 (2010).
  2. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, "Broadband degenerate OPO for mid-infrared frequency comb generation," Opt. Exp. 19, 6296-6302.
  3. D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, T. M. Monro, "Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber," Appl. Phys. Lett. 97, 061106 (2010).
  4. P. Kadwani, J. Chia, F. Altal, R. A. Sims, C. Willis, L. Shah, D. Killinger, M. C. Richardson, "Atmospheric absorption spectroscopy using Tm:fiber sources around 2 microns," Atmospheric and Oceanic Propoagation of Electromagnetic Waves V San FranciscoCAUSA (2011) Paper 79240L.
  5. E. M. Dianov, "Fibre optics: Forty years later," Quantum Electron. 40, 1-6 (2010).
  6. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, E. M. Dianov, "Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber," Opt. Lett. 33, 1336-1338 (2008).
  7. K. Kieu, F. W. Wise, "Soliton thulium-doped fiber laser with carbon nanotube saturable absorber," IEEE Photon. Technol. Lett. 21, 128-130 (2009).
  8. R. A. Sims, P. Kadwani, T. S. McComb, C. C. Willis, L. Shah, M. Richardson, "Fiber amplification of 2 μm picosecond pulses," CLEO QELS Conf. San JoseCA (2010) Paper CFK6.
  9. R. C. Sharp, D. E. Spock, N. Pan, J. Elliot, "190-fs passively mode-locked thulium fiber laser with a low threshold," Opt. Lett. 21, 881-883 (1996).
  10. Q. Wang, T. Chen, K. Chen, "Mode-locked ultrafast thulium fiber laser with all-fiber dispersion management," CLEO QELS Conf. San JoseCAUSA (2010) Paper CFK7.
  11. M. A. Chernyscheva, A. A. Krylov, P. G. Kryukov, E. M. Dianov, "Nonlinear amplifying loop-mirror-based mode-locked thulium-doped fiber laser," IEEE Photon. Technol. Lett. 24, 1254-1256 (2012).
  12. M. A. Chernyscheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, E. M. Dianov, "Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber," Opt. Exp. 20, B124-B130 (2012).
  13. M. E. Fermann, F. Haberl, M. Hofer, H. Hochreiter, "Nonlinear amplifying loop mirror," Opt. Lett. 15, 752-754 (1990).
  14. I. N. Duling, "All-fiber ring soliton laser mode locked with a nonlinear mirror," Opt Lett. 16, 539-541 (1991).
  15. C. W. Rudy, M. J. F. Digonnet, R. L. Byer, "Thulium-doped germanosilicate mode-locked fiber lasers," FILAS Conf. San DiegoCA (2012) Paper FTh4A.
  16. S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).
  17. J. N. Elgin, S. M. J. Kelly, "Spectral modulation and the growth of resonant modes associated with periodically amplified solitons," Opt. Lett. 18, 787-789 (1993).
  18. A. M. Weiner, Ultrafast Optics (Wiley, 2009) pp. 139-144.
  19. D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, M. W. Phillips, "Pulse repetition rates in passive, femtosecond soliton fiber laser," Electron. Lett. 27, 1451-1453 (1991).
  20. B. J. Orr, Infrared LIDAR Applications in Atmospheric Monitoring (Wiley, 2006).
  21. D. Gay, A. Cournoyer, P. Deladurantaye, M. Briand, V. Roy, B. Labranche, M. Levesque, Y. Taillon, "Micro-milling process improvement using an agile pulse-shaping fiber laser," Photonics North QCCanada (2009) Paper 73860R.
  22. K. J. Blow, N. J. Doran, D. Wood, "Generation and stabilization of short soliton pulses in the amplified nonlinear Schrödinger equation," J. Opt. Soc. Amer. B. 5, 381-390 (1988).

2012 (2)

M. A. Chernyscheva, A. A. Krylov, P. G. Kryukov, E. M. Dianov, "Nonlinear amplifying loop-mirror-based mode-locked thulium-doped fiber laser," IEEE Photon. Technol. Lett. 24, 1254-1256 (2012).

M. A. Chernyscheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, E. M. Dianov, "Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber," Opt. Exp. 20, B124-B130 (2012).

2010 (3)

B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, W. E. White, "New source technologies and their impact on future light sources," Nucl. Instr. Meth. Phys. Res. A 622, 657-668 (2010).

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, T. M. Monro, "Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber," Appl. Phys. Lett. 97, 061106 (2010).

E. M. Dianov, "Fibre optics: Forty years later," Quantum Electron. 40, 1-6 (2010).

2009 (1)

K. Kieu, F. W. Wise, "Soliton thulium-doped fiber laser with carbon nanotube saturable absorber," IEEE Photon. Technol. Lett. 21, 128-130 (2009).

2008 (1)

1996 (1)

1993 (1)

1992 (1)

S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).

1991 (2)

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, M. W. Phillips, "Pulse repetition rates in passive, femtosecond soliton fiber laser," Electron. Lett. 27, 1451-1453 (1991).

I. N. Duling, "All-fiber ring soliton laser mode locked with a nonlinear mirror," Opt Lett. 16, 539-541 (1991).

1990 (1)

1988 (1)

K. J. Blow, N. J. Doran, D. Wood, "Generation and stabilization of short soliton pulses in the amplified nonlinear Schrödinger equation," J. Opt. Soc. Amer. B. 5, 381-390 (1988).

Appl. Phys. Lett. (1)

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, T. M. Monro, "Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber," Appl. Phys. Lett. 97, 061106 (2010).

Electron. Lett. (2)

S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett. 28, 806-807 (1992).

D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, M. W. Phillips, "Pulse repetition rates in passive, femtosecond soliton fiber laser," Electron. Lett. 27, 1451-1453 (1991).

IEEE Photon. Technol. Lett. (2)

M. A. Chernyscheva, A. A. Krylov, P. G. Kryukov, E. M. Dianov, "Nonlinear amplifying loop-mirror-based mode-locked thulium-doped fiber laser," IEEE Photon. Technol. Lett. 24, 1254-1256 (2012).

K. Kieu, F. W. Wise, "Soliton thulium-doped fiber laser with carbon nanotube saturable absorber," IEEE Photon. Technol. Lett. 21, 128-130 (2009).

J. Opt. Soc. Amer. B. (1)

K. J. Blow, N. J. Doran, D. Wood, "Generation and stabilization of short soliton pulses in the amplified nonlinear Schrödinger equation," J. Opt. Soc. Amer. B. 5, 381-390 (1988).

Nucl. Instr. Meth. Phys. Res. A (1)

B. E. Carlsten, E. R. Colby, E. H. Esarey, M. Hogan, F. X. Kärtner, W. S. Graves, W. P. Leemans, T. Rao, J. B. Rosenzweig, C. B. Schroeder, D. Sutter, W. E. White, "New source technologies and their impact on future light sources," Nucl. Instr. Meth. Phys. Res. A 622, 657-668 (2010).

Opt Lett. (1)

I. N. Duling, "All-fiber ring soliton laser mode locked with a nonlinear mirror," Opt Lett. 16, 539-541 (1991).

Opt. Exp. (2)

M. A. Chernyscheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, E. M. Dianov, "Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber," Opt. Exp. 20, B124-B130 (2012).

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, "Broadband degenerate OPO for mid-infrared frequency comb generation," Opt. Exp. 19, 6296-6302.

Opt. Lett. (4)

Quantum Electron. (1)

E. M. Dianov, "Fibre optics: Forty years later," Quantum Electron. 40, 1-6 (2010).

Other (7)

R. A. Sims, P. Kadwani, T. S. McComb, C. C. Willis, L. Shah, M. Richardson, "Fiber amplification of 2 μm picosecond pulses," CLEO QELS Conf. San JoseCA (2010) Paper CFK6.

P. Kadwani, J. Chia, F. Altal, R. A. Sims, C. Willis, L. Shah, D. Killinger, M. C. Richardson, "Atmospheric absorption spectroscopy using Tm:fiber sources around 2 microns," Atmospheric and Oceanic Propoagation of Electromagnetic Waves V San FranciscoCAUSA (2011) Paper 79240L.

A. M. Weiner, Ultrafast Optics (Wiley, 2009) pp. 139-144.

C. W. Rudy, M. J. F. Digonnet, R. L. Byer, "Thulium-doped germanosilicate mode-locked fiber lasers," FILAS Conf. San DiegoCA (2012) Paper FTh4A.

Q. Wang, T. Chen, K. Chen, "Mode-locked ultrafast thulium fiber laser with all-fiber dispersion management," CLEO QELS Conf. San JoseCAUSA (2010) Paper CFK7.

B. J. Orr, Infrared LIDAR Applications in Atmospheric Monitoring (Wiley, 2006).

D. Gay, A. Cournoyer, P. Deladurantaye, M. Briand, V. Roy, B. Labranche, M. Levesque, Y. Taillon, "Micro-milling process improvement using an agile pulse-shaping fiber laser," Photonics North QCCanada (2009) Paper 73860R.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.