Abstract

A novel seven-core multicore tellurite fiber is proposed and fabricated in the paper. Each core with high index is made of 70O<sub>2</sub>-8Li<sub>2</sub>O-19WO<sub>3</sub>-1MoO<sub>3</sub>-2Nb<sub>2</sub>O<sub>5</sub> (mol%) glass. The background with low index is made of 70TeO<sub>2</sub>-20ZnO-5Na<sub>2</sub>O-5La<sub>2</sub>O<sub>3</sub> (mol%) glass. Compared with the single-core tellurite fiber, this fiber has novel chromatic dispersion with two zero-dispersion wavelengths at 1.86 μm and 2.16 μm. The spatial interference fringes generated in the different cores of the fiber are obvious.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. P. St.J. Russell, "Photonic-crystal fibers," J. Lightw. Technol. 24, 4729-4749 (2006).
  2. H. T. Bookey, J. Lousteau, A. Jha, N. Gayraud, R. R. Thomson, N. D. Psaila, H. Li, W. N. MacPherson, J. S. Barton, A. K. Kar, "Multiple rare earth emissions in a multicore tellurite fiber with a single pump wavelength," Opt. Exp. 15, 17554-17561 (2007).
  3. T. F. S. Büttner, D. D. Hudson, E. C. Mägi, A. C. Bedoya, T. Taunay, B. J. Eggleton, "Multicore, tapered optical fiber for nonlinear pulse reshaping and saturable absorption," Opt. Lett. 37, 2469-2471 (2012).
  4. B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, "Phase-locked supermode emissions from a dual multicore fiber laser," Appl. Phys. B 105, 213-217 (2011).
  5. Y. Huo, P. Cheo, G. King, "Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier," Opt. Exp. 12, 6230-6239 (2004).
  6. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. Yan, J. M. Fini, E. M. Monberg, F. V. Dimarcello, "Space-, wavelength-, polarization-division, multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber," Proc. OFC (2011).
  7. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, F. V. Dimarcello, "Seven-core multicore fiber transmissions for passive optical network," Opt. Exp. 18, 11117-11122 (2010).
  8. I. Gasulla, J. Capmany, "microwave photonics applications of multicore fibers," IEEE Photon. 4, 877-888 (2012).
  9. D. K. C. Wu, B. T. Kuhlmey, B. J. Eggleton, "Ultrasensitive photonic crystal fiber refractive index sensor," Opt. Lett. 34, 322-324 (2009).
  10. L. Li, A. Schülzgen, H. Li, V. L. Temyanko, J. V. Moloney, N. Peyghambarian, "Phase-locked multicore all-fiber lasers: Modeling and experimental investigation," J. Opt. Soc. Amer. B 24, 1721-1728 (2007).
  11. A. Mafi, J. V. Moloney, "Shaping modes in multicore photonic crystal fibers," IEEE Photon. Technol. Lett. 17, 348-350 (2005).
  12. X. H. Fang, M. L. Hu, L. L. Huang, L. Chai, N. L. Dai, J. Y. Li, A. Y. Tashchilina, A. M. Zheltikov, C. Y. Wang, "Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber," Opt. Lett. 37, 2292-2294 (2012).
  13. K. M. Gundu, M. Kolesik, J. V. Moloney, "Mode shaping in multicore fibers," Opt. Lett. 32, 763-765 (2007).
  14. M. Koshiba, K. Saitoh, K. Takenaga, S. Matsuo, "Multi-core fiber design and analysis: Coupled-mode theory and coupled-power theory," Opt. Exp. 19, B102-B111 (2011).
  15. A. X. Lin, A. D. Zhang, E. J. Bushong, J. Toulouse, "Solid-core tellurite glass fiber for infrared and nonlinear applications," Opt. Exp. 17, 16716-16721 (2009).
  16. M. S. Liao, X. Yan, Z. C. Duan, T. Suzuki, Y. Ohishi, "Tellurite photonic nanostructured fiber," J. Lightw. Technol. 29, 1018-1025 (2011).
  17. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, J. C. Knight, "Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion," Opt. Exp. 19, 4902-4907 (2011).

2012 (3)

2011 (4)

M. Koshiba, K. Saitoh, K. Takenaga, S. Matsuo, "Multi-core fiber design and analysis: Coupled-mode theory and coupled-power theory," Opt. Exp. 19, B102-B111 (2011).

M. S. Liao, X. Yan, Z. C. Duan, T. Suzuki, Y. Ohishi, "Tellurite photonic nanostructured fiber," J. Lightw. Technol. 29, 1018-1025 (2011).

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, J. C. Knight, "Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion," Opt. Exp. 19, 4902-4907 (2011).

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, "Phase-locked supermode emissions from a dual multicore fiber laser," Appl. Phys. B 105, 213-217 (2011).

2010 (1)

B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, F. V. Dimarcello, "Seven-core multicore fiber transmissions for passive optical network," Opt. Exp. 18, 11117-11122 (2010).

2009 (2)

A. X. Lin, A. D. Zhang, E. J. Bushong, J. Toulouse, "Solid-core tellurite glass fiber for infrared and nonlinear applications," Opt. Exp. 17, 16716-16721 (2009).

D. K. C. Wu, B. T. Kuhlmey, B. J. Eggleton, "Ultrasensitive photonic crystal fiber refractive index sensor," Opt. Lett. 34, 322-324 (2009).

2007 (3)

L. Li, A. Schülzgen, H. Li, V. L. Temyanko, J. V. Moloney, N. Peyghambarian, "Phase-locked multicore all-fiber lasers: Modeling and experimental investigation," J. Opt. Soc. Amer. B 24, 1721-1728 (2007).

H. T. Bookey, J. Lousteau, A. Jha, N. Gayraud, R. R. Thomson, N. D. Psaila, H. Li, W. N. MacPherson, J. S. Barton, A. K. Kar, "Multiple rare earth emissions in a multicore tellurite fiber with a single pump wavelength," Opt. Exp. 15, 17554-17561 (2007).

K. M. Gundu, M. Kolesik, J. V. Moloney, "Mode shaping in multicore fibers," Opt. Lett. 32, 763-765 (2007).

2006 (1)

P. St.J. Russell, "Photonic-crystal fibers," J. Lightw. Technol. 24, 4729-4749 (2006).

2005 (1)

A. Mafi, J. V. Moloney, "Shaping modes in multicore photonic crystal fibers," IEEE Photon. Technol. Lett. 17, 348-350 (2005).

2004 (1)

Y. Huo, P. Cheo, G. King, "Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier," Opt. Exp. 12, 6230-6239 (2004).

Appl. Phys. B (1)

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, "Phase-locked supermode emissions from a dual multicore fiber laser," Appl. Phys. B 105, 213-217 (2011).

IEEE Photon. (1)

I. Gasulla, J. Capmany, "microwave photonics applications of multicore fibers," IEEE Photon. 4, 877-888 (2012).

IEEE Photon. Technol. Lett. (1)

A. Mafi, J. V. Moloney, "Shaping modes in multicore photonic crystal fibers," IEEE Photon. Technol. Lett. 17, 348-350 (2005).

J. Opt. Soc. Amer. B (1)

L. Li, A. Schülzgen, H. Li, V. L. Temyanko, J. V. Moloney, N. Peyghambarian, "Phase-locked multicore all-fiber lasers: Modeling and experimental investigation," J. Opt. Soc. Amer. B 24, 1721-1728 (2007).

J. Lightw. Technol. (2)

P. St.J. Russell, "Photonic-crystal fibers," J. Lightw. Technol. 24, 4729-4749 (2006).

M. S. Liao, X. Yan, Z. C. Duan, T. Suzuki, Y. Ohishi, "Tellurite photonic nanostructured fiber," J. Lightw. Technol. 29, 1018-1025 (2011).

Opt. Exp. (2)

A. X. Lin, A. D. Zhang, E. J. Bushong, J. Toulouse, "Solid-core tellurite glass fiber for infrared and nonlinear applications," Opt. Exp. 17, 16716-16721 (2009).

B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, F. V. Dimarcello, "Seven-core multicore fiber transmissions for passive optical network," Opt. Exp. 18, 11117-11122 (2010).

Opt. Exp. (4)

H. T. Bookey, J. Lousteau, A. Jha, N. Gayraud, R. R. Thomson, N. D. Psaila, H. Li, W. N. MacPherson, J. S. Barton, A. K. Kar, "Multiple rare earth emissions in a multicore tellurite fiber with a single pump wavelength," Opt. Exp. 15, 17554-17561 (2007).

Y. Huo, P. Cheo, G. King, "Fundamental mode operation of a 19-core phase-locked Yb-doped fiber amplifier," Opt. Exp. 12, 6230-6239 (2004).

M. Koshiba, K. Saitoh, K. Takenaga, S. Matsuo, "Multi-core fiber design and analysis: Coupled-mode theory and coupled-power theory," Opt. Exp. 19, B102-B111 (2011).

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, J. C. Knight, "Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion," Opt. Exp. 19, 4902-4907 (2011).

Opt. Lett. (4)

Other (1)

B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. Yan, J. M. Fini, E. M. Monberg, F. V. Dimarcello, "Space-, wavelength-, polarization-division, multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber," Proc. OFC (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.