Abstract

White lighting LEDs offer great potential for high speed communications, especially for indoor applications. However, for their widespread adoption, two important issues need to be addressed: the lack of diversity in multiple-input multiple output (MIMO) systems, and the small field of view of receivers. In this paper, we describe a design using a hemispherical lens in the receiver that solves these problems. By using classical optics, we derive exact expressions for the channel gain and the optical power density of the projected images. Simulation results of a typical indoor scenario show that the new system has a wide field of view, and provides adequate channel gain for angles of incidence as large as 70 degrees. We present the distribution of optical power on the imaging plane for various receiving positions and tilted receivers over a number of representative indoor scenarios. They show that the images of LEDs are clearly distinguishable. The results demonstrate the presence of low channel correlations between individual transmitters and receivers. Consequently, this confirms that the new technique is capable of providing significant diversity order for MIMO optical wireless applications.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. T. Komine, M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lights," IEEE Trans. Consum. Electron. 50, 100-107 (2004).
  2. VLCCVisible Light Communications Consortium, (2008).
  3. IEEEIEEE 802.15.7 WPAN Visual Light Communication Study Group, (2008).
  4. D. C. O'Brien, M. Katz, P. Wang, K. Kalliojarvi, S. Arnon, M. Matsumoto, R. J. Green, S. Jivkova, "Short range optical wireless communications," Proc. Wireless World Res. Forum (2005).
  5. J. R. Barry, J. M. Kahn, E. A. Lee, D. G. Messerschmitt, "High-speed nondirective optical communication for wireless networks," IEEE Netw. Mag. 5, 44-54 (1991).
  6. M. Kavehrad, S. Jivkova, "Indoor broadband optical wireless communications: Optical subsystems designs and their impact on channel characteristics," IEEE Wireless Commun. 10, 30-35 (2003).
  7. L. Zeng, D. C. O'Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting," IEEE J. Sel. Areas Commun. 27, 1654-1662 (2009).
  8. K. D. Dambul, D. C. O'Brien, G. Faulkner, "Indoor optical wireless MIMO system with an imaging receiver," IEEE Photon. Technol. Lett. 23, 97-99 (2011).
  9. S. Hranilovic, F. R. Kschischang, "A pixelated MIMO wireless optical communication system," IEEE J. Sel. Topics Quantum Electron. 12, 859-874 (2006).
  10. J. M. Kahn, R. You, P. Djahani, A. G. Weisbin, B. K. Teik, A. Tang, "Imaging diversity receivers for high-speed infrared wireless communication," IEEE Commun. Mag. 36, 88-94 (1998).
  11. D. C. O'Brien, "Multi-Input Multi-Output (MIMO) indoor optical wireless communications," Proc. Signals, Systems Computers, 2009 Conf. Rec. 43rd Asilomar Conf. (2009) pp. 1636-1639.
  12. S. D. Perli, N. Ahmed, D. Katabi, "PixNet: Interference-free wireless links using LCD-camera pairs," Proc. MOBICOM'2010 (2010) pp. 137-148.
  13. W. Yuan, K. Dana, M. Varga, A. Ashok, M. Gruteser, N. Mandayam, "Computer vision methods for visual MIMO optical system," Proc. CVPRW (2011) pp. 37-43.
  14. J. M. Kahn, J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).
  15. I. E. Telatar, "Capacity of multi-antenna Gaussian channels," Eur. Trans. Telecom. 10, 585-595 (1999).
  16. L. Zeng, D. C. O'Brien, H. Le-Minh, L. Kyungwoo, J. Daekwang, O. Yunje, "Improvement of date rate by using equalization in an indoor visible light communication system," Proc. IEEE ICCSC (2008) pp. 678-682.
  17. M. J. Langford, A. Fox, R. S. Smith, Langford's Basic Photography the Guide for Serious Photographers .
  18. W. N. Bond, "A wide angle lens for cloud recording," Philosophical Mag. 44, 999-1001 (1922).
  19. T. Q. Wang, Y. A. Sekercioglu, J. Armstrong, "Hemispherical lens based imaging receiver for MIMO optical wireless communications," Proc. 3rd IEEE Workshop OWC (2012) pp. 1239-1243.
  20. F. R. Gfeller, U. H. Bapst, "Wireless in-house data communication via diffuse infrared radiation," Proc. IEEE 67, 1474-1486 (1979).
  21. K. D. Möller, Optics .
  22. J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, D. G. Messerschmitt, "Simulation of multipath impulse response for wireless optical channels," IEEE J. Sel. Areas Commun. 11, 367-379 (1993).
  23. R. M. Brannon, “Rotation, A Review of Useful Theorems Involving Proper Orthogonal Matrices Referenced to Three Dimensional Physical Space,” (2002) http://www.mech.utah.edu/~brannon/public/rotation.pdf.
  24. J. B. Choong, J. Armstrong, “An Optical Wireless Receiver Using A Hemispherical Lens for MIMO Visible Light Communications Systems,” Summer Research Project of Monash University (2013) http://titania.ctie.monash.edu.au/mimo-hemis-exp.pdf.

2011 (1)

K. D. Dambul, D. C. O'Brien, G. Faulkner, "Indoor optical wireless MIMO system with an imaging receiver," IEEE Photon. Technol. Lett. 23, 97-99 (2011).

2009 (1)

L. Zeng, D. C. O'Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting," IEEE J. Sel. Areas Commun. 27, 1654-1662 (2009).

2006 (1)

S. Hranilovic, F. R. Kschischang, "A pixelated MIMO wireless optical communication system," IEEE J. Sel. Topics Quantum Electron. 12, 859-874 (2006).

2004 (1)

T. Komine, M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lights," IEEE Trans. Consum. Electron. 50, 100-107 (2004).

2003 (1)

M. Kavehrad, S. Jivkova, "Indoor broadband optical wireless communications: Optical subsystems designs and their impact on channel characteristics," IEEE Wireless Commun. 10, 30-35 (2003).

1999 (1)

I. E. Telatar, "Capacity of multi-antenna Gaussian channels," Eur. Trans. Telecom. 10, 585-595 (1999).

1998 (1)

J. M. Kahn, R. You, P. Djahani, A. G. Weisbin, B. K. Teik, A. Tang, "Imaging diversity receivers for high-speed infrared wireless communication," IEEE Commun. Mag. 36, 88-94 (1998).

1997 (1)

J. M. Kahn, J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).

1993 (1)

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, D. G. Messerschmitt, "Simulation of multipath impulse response for wireless optical channels," IEEE J. Sel. Areas Commun. 11, 367-379 (1993).

1991 (1)

J. R. Barry, J. M. Kahn, E. A. Lee, D. G. Messerschmitt, "High-speed nondirective optical communication for wireless networks," IEEE Netw. Mag. 5, 44-54 (1991).

1979 (1)

F. R. Gfeller, U. H. Bapst, "Wireless in-house data communication via diffuse infrared radiation," Proc. IEEE 67, 1474-1486 (1979).

1922 (1)

W. N. Bond, "A wide angle lens for cloud recording," Philosophical Mag. 44, 999-1001 (1922).

Eur. Trans. Telecom. (1)

I. E. Telatar, "Capacity of multi-antenna Gaussian channels," Eur. Trans. Telecom. 10, 585-595 (1999).

IEEE Commun. Mag. (1)

J. M. Kahn, R. You, P. Djahani, A. G. Weisbin, B. K. Teik, A. Tang, "Imaging diversity receivers for high-speed infrared wireless communication," IEEE Commun. Mag. 36, 88-94 (1998).

IEEE J. Sel. Areas Commun. (2)

L. Zeng, D. C. O'Brien, H. L. Minh, G. E. Faulkner, K. Lee, D. Jung, Y. Oh, E. T. Won, "High data rate multiple input multiple output (MIMO) optical wireless communications using white led lighting," IEEE J. Sel. Areas Commun. 27, 1654-1662 (2009).

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, D. G. Messerschmitt, "Simulation of multipath impulse response for wireless optical channels," IEEE J. Sel. Areas Commun. 11, 367-379 (1993).

IEEE J. Sel. Topics Quantum Electron. (1)

S. Hranilovic, F. R. Kschischang, "A pixelated MIMO wireless optical communication system," IEEE J. Sel. Topics Quantum Electron. 12, 859-874 (2006).

IEEE Netw. Mag. (1)

J. R. Barry, J. M. Kahn, E. A. Lee, D. G. Messerschmitt, "High-speed nondirective optical communication for wireless networks," IEEE Netw. Mag. 5, 44-54 (1991).

IEEE Photon. Technol. Lett. (1)

K. D. Dambul, D. C. O'Brien, G. Faulkner, "Indoor optical wireless MIMO system with an imaging receiver," IEEE Photon. Technol. Lett. 23, 97-99 (2011).

IEEE Trans. Consum. Electron. (1)

T. Komine, M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lights," IEEE Trans. Consum. Electron. 50, 100-107 (2004).

IEEE Wireless Commun. (1)

M. Kavehrad, S. Jivkova, "Indoor broadband optical wireless communications: Optical subsystems designs and their impact on channel characteristics," IEEE Wireless Commun. 10, 30-35 (2003).

Philosophical Mag. (1)

W. N. Bond, "A wide angle lens for cloud recording," Philosophical Mag. 44, 999-1001 (1922).

Proc. IEEE (2)

F. R. Gfeller, U. H. Bapst, "Wireless in-house data communication via diffuse infrared radiation," Proc. IEEE 67, 1474-1486 (1979).

J. M. Kahn, J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).

Other (12)

L. Zeng, D. C. O'Brien, H. Le-Minh, L. Kyungwoo, J. Daekwang, O. Yunje, "Improvement of date rate by using equalization in an indoor visible light communication system," Proc. IEEE ICCSC (2008) pp. 678-682.

M. J. Langford, A. Fox, R. S. Smith, Langford's Basic Photography the Guide for Serious Photographers .

D. C. O'Brien, "Multi-Input Multi-Output (MIMO) indoor optical wireless communications," Proc. Signals, Systems Computers, 2009 Conf. Rec. 43rd Asilomar Conf. (2009) pp. 1636-1639.

S. D. Perli, N. Ahmed, D. Katabi, "PixNet: Interference-free wireless links using LCD-camera pairs," Proc. MOBICOM'2010 (2010) pp. 137-148.

W. Yuan, K. Dana, M. Varga, A. Ashok, M. Gruteser, N. Mandayam, "Computer vision methods for visual MIMO optical system," Proc. CVPRW (2011) pp. 37-43.

VLCCVisible Light Communications Consortium, (2008).

IEEEIEEE 802.15.7 WPAN Visual Light Communication Study Group, (2008).

D. C. O'Brien, M. Katz, P. Wang, K. Kalliojarvi, S. Arnon, M. Matsumoto, R. J. Green, S. Jivkova, "Short range optical wireless communications," Proc. Wireless World Res. Forum (2005).

K. D. Möller, Optics .

T. Q. Wang, Y. A. Sekercioglu, J. Armstrong, "Hemispherical lens based imaging receiver for MIMO optical wireless communications," Proc. 3rd IEEE Workshop OWC (2012) pp. 1239-1243.

R. M. Brannon, “Rotation, A Review of Useful Theorems Involving Proper Orthogonal Matrices Referenced to Three Dimensional Physical Space,” (2002) http://www.mech.utah.edu/~brannon/public/rotation.pdf.

J. B. Choong, J. Armstrong, “An Optical Wireless Receiver Using A Hemispherical Lens for MIMO Visible Light Communications Systems,” Summer Research Project of Monash University (2013) http://titania.ctie.monash.edu.au/mimo-hemis-exp.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.