Abstract

A major shortcoming of light-emitting diodes (LEDs) is their highly non-linear optical-power-versus-current characteristic. This non-linearity largely restricts the dynamic range and the transmission power of common optical wireless transmitters. This restriction degrades the performance of optical wireless communication (OWC) systems. In this paper, a novel transmitter concept for OWC is proposed which employs discrete power level stepping. The transmitter consists of several on-off-switchable emitter groups. These groups are individually controlled and emit fixed specific optical intensities in parallel. As optical intensities constructively add up, the total emitted intensity is generated by the sum of the emitted intensities of all activated emitter groups. Therefore, the proposed transmitter solution can generate several discrete optical intensity levels which can be used for optical wireless signal transmission. The transmitter design allows the utilisation of the full dynamic range of LEDs or laser diodes by avoiding non-linearity issues. Moreover, costs and complexity of the optical front-end are significantly reduced as neither a (DAC) nor high-speed current controllers are required. This simple design also provides improved power efficiency. Transmission experiments prove the functionality of the implemented optical transmitter. It is shown that the practical performance of the transmitter closely matches the expected performance determined by computer simulations. Moreover, the implemented optical transmitter is compared to an electrical transmission which provides ideal linearity characteristics, and therefore corresponds to an ideal conventional optical transceiver.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. GBI ResearchVisible Light Communication (VLC)—A Potential Solution to the Global Wireless Spectrum Shortage, (2011) http://www.gbiresearch.com.
  2. T. Komine, M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lights," IEEE Trans. Consum. Electron. 50, 100-107 (2004).
  3. H. Elgala, R. Mesleh, H. Haas, "Indoor optical wireless communication: Potential and state-of-the-art," IEEE Commun. Mag. 49, 56-62 (2011).
  4. J. Kahn, J. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).
  5. J. Barry, J. Kahn, W. Krause, E. Lee, D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, 367-379 (1993).
  6. F. R. Gfeller, U. Bapst, "Wireless in-house data communication via diffuse infrared radiation," Proc. IEEE 67, 1474-1486 (1979).
  7. O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, A. Ayala, "OFDM over indoor wireless optical channel," Optoelectron., IEE Proc. 152, 199-204 (2005).
  8. H. Liu, G. Li, OFDM-Based Broadband Wireless Networks: Design and Optimization. (Wiley, 2005).
  9. J. Heiskala, J. Terry, OFDM Wireless LANs: A Theoretical and Practical Guide (Sams Publishing, 2002).
  10. A. Goldsmith, Wireless Communications. (Cambridge Univ. Press, 2005).
  11. M. Afgani, H. Haas, H. Elgala, D. Knipp, "Visible light communication using OFDM," Proc. TRIDENTCOM (2006) pp. 129-134.
  12. J. Armstrong, "OFDM for optical communications," J. Lightw. Technol. 27, 189-204 (2009).
  13. D. Barros, S. Wilson, J. Kahn, "Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links," IEEE Trans. Commun. 60, 153-163 (2012).
  14. E. Costa, M. Midrio, S. Pupolin, "Impact of amplifier nonlinearities on OFDM transmission system performance," IEEE Commun. Lett. 3, 37-39 (1999).
  15. E. Costa, S. Pupolin, "M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise," IEEE Trans. Commun. 50, 462-472 (2002).
  16. D. Dardari, V. Tralli, A. Vaccari, "A Theoretical characterization of nonlinear distortion effects in OFDM systems," IEEE Trans. Commun. 48, 1755-1764 (2000).
  17. W. Jun, Y. Chenyang, "The influence of analog device on OFDM system," Proc. ICCT (2003) pp. 1060-1062.
  18. B. Inan, S. C. J. Lee, S. Randel, I. Neokosmidis, A. M. J. Koonen, J. W. Walewski, "Impact of LED nonlinearity on discrete multitone modulation," IEEE/OSA J. Opt. Commun. Netw. 1, 439-451 (2009).
  19. I. Neokosmidis, T. Kamalakis, J. W. Walewski, B. Inan, T. Sphicopoulos, "Impact of nonlinear LED transfer function on discrete multitone modulation: Analytical approach," J. Lightw. Technol. 27, 4970-4978 (2009).
  20. H. Elgala, R. Mesleh, H. Haas, "A study of LED nonlinearity effects on optical wireless transmission using OFDM," Proc. WOCN (2009).
  21. I. Stefan, H. Elgala, R. Mesleh, D. O'Brien, H. Haas, "Optical wireless OFDM system on FPGA: Study of LED nonlinearity effects," Proc. IEEE VTC (2011) pp. 1-5.
  22. H. Elgala, R. Mesleh, H. Haas, "Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs," Intersci. Int. J. Ultra Wideband Commun. Syst. (IJUWBCS) 1, 143-150 (2009).
  23. A. Behravan, T. Eriksson, "PAPR and other measures for OFDM systems with nonlinearity," Proc 5th Int. Symp. Wireless Personal Multimedia Commun. (2002) pp. 149-153.
  24. Advanced Photonix Inc.Datasheet: Red Enhanced High Performance Silicon Photodiode SD 445-14-21-305, (2006) http://www.advancedphotonix.com/ap_products/pdfs/SD445-14-21-305.pdf.
  25. S. Dimitrov, S. Sinanovic, H. Haas, "Clipping noise in OFDMbased optical wireless communication systems," IEEE Trans. Commun. 60, 1072-1081 (2012).
  26. J. Armstrong, A. Lowery, "Power Efficient Optical OFDM," Electron. Lett. 42, 370-372 (2006).
  27. S. C. J. Lee, S. Randel, F. Breyer, A. M. J. Koonen, "PAM-DMT for intensity-modulated and direct-detection optical communication systems," IEEE Photon. Technol. Lett. 21, 1749-1751 (2009).
  28. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, E. Ciaramella, "1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation," IEEE Photon. J. 4, 1465-1473 (2012).
  29. C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, "Mitigation of optical background noise in Light-Emitting Diode (LED) optical wireless communication systems," IEEE Photon. J. 5, 7 900 307-7 900 307 (2013).
  30. C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, H. K. Tsang, "Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system," OSA Opt. Exp. 20, 16 218-16 223 (2012).
  31. J. Armstrong, B. J. C. Schmidt, "Comparison of asymmetrically clipped optical OFDM and DC-biased optical ofdm in AWGN," IEEE Commun. Lett. 12, 343-345 (2008).
  32. S. Dimitrov, S. Sinanovic, H. Haas, "Signal shaping and modulation for optical wireless communication," J. Lightw. Technol. 30, 1319-1328 (2012).
  33. O. Bouchet, G. Faulkner, L. Grobe, E. Gueutier, K.-D. Langer, S. Nerreter, D. O'Brien, R. Turnbull, J. Vucic, J. W. Walewski, M. Wolf, "Deliverable D4.2b physical layer design and specification," Proc. 7th Framework Programme Inf. Communication Technol. (2011) http://www.ict-omega.eu.
  34. D. Derickson, M. Müller, Digital Communications: Test and Measurement. (Prentice Hall, 2008).
  35. OSRAM Opto Semiconductors GmbHDatasheet: SFH 4501, SFH 4502, SFH 4503 High Power Infrared Emitter, (2008) http://catalog.osram-os.com.

2013

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, "Mitigation of optical background noise in Light-Emitting Diode (LED) optical wireless communication systems," IEEE Photon. J. 5, 7 900 307-7 900 307 (2013).

2012

C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, H. K. Tsang, "Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system," OSA Opt. Exp. 20, 16 218-16 223 (2012).

S. Dimitrov, S. Sinanovic, H. Haas, "Signal shaping and modulation for optical wireless communication," J. Lightw. Technol. 30, 1319-1328 (2012).

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, E. Ciaramella, "1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation," IEEE Photon. J. 4, 1465-1473 (2012).

D. Barros, S. Wilson, J. Kahn, "Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links," IEEE Trans. Commun. 60, 153-163 (2012).

S. Dimitrov, S. Sinanovic, H. Haas, "Clipping noise in OFDMbased optical wireless communication systems," IEEE Trans. Commun. 60, 1072-1081 (2012).

2011

H. Elgala, R. Mesleh, H. Haas, "Indoor optical wireless communication: Potential and state-of-the-art," IEEE Commun. Mag. 49, 56-62 (2011).

O. Bouchet, G. Faulkner, L. Grobe, E. Gueutier, K.-D. Langer, S. Nerreter, D. O'Brien, R. Turnbull, J. Vucic, J. W. Walewski, M. Wolf, "Deliverable D4.2b physical layer design and specification," Proc. 7th Framework Programme Inf. Communication Technol. (2011) http://www.ict-omega.eu.

2009

J. Armstrong, "OFDM for optical communications," J. Lightw. Technol. 27, 189-204 (2009).

S. C. J. Lee, S. Randel, F. Breyer, A. M. J. Koonen, "PAM-DMT for intensity-modulated and direct-detection optical communication systems," IEEE Photon. Technol. Lett. 21, 1749-1751 (2009).

B. Inan, S. C. J. Lee, S. Randel, I. Neokosmidis, A. M. J. Koonen, J. W. Walewski, "Impact of LED nonlinearity on discrete multitone modulation," IEEE/OSA J. Opt. Commun. Netw. 1, 439-451 (2009).

I. Neokosmidis, T. Kamalakis, J. W. Walewski, B. Inan, T. Sphicopoulos, "Impact of nonlinear LED transfer function on discrete multitone modulation: Analytical approach," J. Lightw. Technol. 27, 4970-4978 (2009).

H. Elgala, R. Mesleh, H. Haas, "Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs," Intersci. Int. J. Ultra Wideband Commun. Syst. (IJUWBCS) 1, 143-150 (2009).

2008

J. Armstrong, B. J. C. Schmidt, "Comparison of asymmetrically clipped optical OFDM and DC-biased optical ofdm in AWGN," IEEE Commun. Lett. 12, 343-345 (2008).

2006

J. Armstrong, A. Lowery, "Power Efficient Optical OFDM," Electron. Lett. 42, 370-372 (2006).

2005

O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, A. Ayala, "OFDM over indoor wireless optical channel," Optoelectron., IEE Proc. 152, 199-204 (2005).

2004

T. Komine, M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lights," IEEE Trans. Consum. Electron. 50, 100-107 (2004).

2002

E. Costa, S. Pupolin, "M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise," IEEE Trans. Commun. 50, 462-472 (2002).

2000

D. Dardari, V. Tralli, A. Vaccari, "A Theoretical characterization of nonlinear distortion effects in OFDM systems," IEEE Trans. Commun. 48, 1755-1764 (2000).

1999

E. Costa, M. Midrio, S. Pupolin, "Impact of amplifier nonlinearities on OFDM transmission system performance," IEEE Commun. Lett. 3, 37-39 (1999).

1997

J. Kahn, J. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).

1993

J. Barry, J. Kahn, W. Krause, E. Lee, D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, 367-379 (1993).

1979

F. R. Gfeller, U. Bapst, "Wireless in-house data communication via diffuse infrared radiation," Proc. IEEE 67, 1474-1486 (1979).

Electron. Lett.

J. Armstrong, A. Lowery, "Power Efficient Optical OFDM," Electron. Lett. 42, 370-372 (2006).

IEEE Commun. Lett.

E. Costa, M. Midrio, S. Pupolin, "Impact of amplifier nonlinearities on OFDM transmission system performance," IEEE Commun. Lett. 3, 37-39 (1999).

IEEE Photon. Technol. Lett.

S. C. J. Lee, S. Randel, F. Breyer, A. M. J. Koonen, "PAM-DMT for intensity-modulated and direct-detection optical communication systems," IEEE Photon. Technol. Lett. 21, 1749-1751 (2009).

IEEE Trans. Commun.

D. Dardari, V. Tralli, A. Vaccari, "A Theoretical characterization of nonlinear distortion effects in OFDM systems," IEEE Trans. Commun. 48, 1755-1764 (2000).

IEEE Trans. Consum. Electron.

T. Komine, M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lights," IEEE Trans. Consum. Electron. 50, 100-107 (2004).

IEEE Commun. Lett.

J. Armstrong, B. J. C. Schmidt, "Comparison of asymmetrically clipped optical OFDM and DC-biased optical ofdm in AWGN," IEEE Commun. Lett. 12, 343-345 (2008).

IEEE Commun. Mag.

H. Elgala, R. Mesleh, H. Haas, "Indoor optical wireless communication: Potential and state-of-the-art," IEEE Commun. Mag. 49, 56-62 (2011).

IEEE J. Sel. Areas Commun.

J. Barry, J. Kahn, W. Krause, E. Lee, D. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE J. Sel. Areas Commun. 11, 367-379 (1993).

IEEE Photon. J.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, E. Ciaramella, "1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation," IEEE Photon. J. 4, 1465-1473 (2012).

C. W. Chow, C. H. Yeh, Y. F. Liu, P. Y. Huang, "Mitigation of optical background noise in Light-Emitting Diode (LED) optical wireless communication systems," IEEE Photon. J. 5, 7 900 307-7 900 307 (2013).

IEEE Trans. Commun.

D. Barros, S. Wilson, J. Kahn, "Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links," IEEE Trans. Commun. 60, 153-163 (2012).

S. Dimitrov, S. Sinanovic, H. Haas, "Clipping noise in OFDMbased optical wireless communication systems," IEEE Trans. Commun. 60, 1072-1081 (2012).

E. Costa, S. Pupolin, "M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise," IEEE Trans. Commun. 50, 462-472 (2002).

IEEE/OSA J. Opt. Commun. Netw.

B. Inan, S. C. J. Lee, S. Randel, I. Neokosmidis, A. M. J. Koonen, J. W. Walewski, "Impact of LED nonlinearity on discrete multitone modulation," IEEE/OSA J. Opt. Commun. Netw. 1, 439-451 (2009).

Intersci. Int. J. Ultra Wideband Commun. Syst. (IJUWBCS)

H. Elgala, R. Mesleh, H. Haas, "Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs," Intersci. Int. J. Ultra Wideband Commun. Syst. (IJUWBCS) 1, 143-150 (2009).

J. Lightw. Technol.

I. Neokosmidis, T. Kamalakis, J. W. Walewski, B. Inan, T. Sphicopoulos, "Impact of nonlinear LED transfer function on discrete multitone modulation: Analytical approach," J. Lightw. Technol. 27, 4970-4978 (2009).

J. Lightw. Technol.

J. Armstrong, "OFDM for optical communications," J. Lightw. Technol. 27, 189-204 (2009).

S. Dimitrov, S. Sinanovic, H. Haas, "Signal shaping and modulation for optical wireless communication," J. Lightw. Technol. 30, 1319-1328 (2012).

Optoelectron., IEE Proc.

O. Gonzalez, R. Perez-Jimenez, S. Rodriguez, J. Rabadan, A. Ayala, "OFDM over indoor wireless optical channel," Optoelectron., IEE Proc. 152, 199-204 (2005).

OSA Opt. Exp.

C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, H. K. Tsang, "Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system," OSA Opt. Exp. 20, 16 218-16 223 (2012).

Proc. 7th Framework Programme Inf. Communication Technol.

O. Bouchet, G. Faulkner, L. Grobe, E. Gueutier, K.-D. Langer, S. Nerreter, D. O'Brien, R. Turnbull, J. Vucic, J. W. Walewski, M. Wolf, "Deliverable D4.2b physical layer design and specification," Proc. 7th Framework Programme Inf. Communication Technol. (2011) http://www.ict-omega.eu.

Proc. IEEE

F. R. Gfeller, U. Bapst, "Wireless in-house data communication via diffuse infrared radiation," Proc. IEEE 67, 1474-1486 (1979).

J. Kahn, J. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).

Other

H. Liu, G. Li, OFDM-Based Broadband Wireless Networks: Design and Optimization. (Wiley, 2005).

J. Heiskala, J. Terry, OFDM Wireless LANs: A Theoretical and Practical Guide (Sams Publishing, 2002).

A. Goldsmith, Wireless Communications. (Cambridge Univ. Press, 2005).

M. Afgani, H. Haas, H. Elgala, D. Knipp, "Visible light communication using OFDM," Proc. TRIDENTCOM (2006) pp. 129-134.

GBI ResearchVisible Light Communication (VLC)—A Potential Solution to the Global Wireless Spectrum Shortage, (2011) http://www.gbiresearch.com.

H. Elgala, R. Mesleh, H. Haas, "A study of LED nonlinearity effects on optical wireless transmission using OFDM," Proc. WOCN (2009).

I. Stefan, H. Elgala, R. Mesleh, D. O'Brien, H. Haas, "Optical wireless OFDM system on FPGA: Study of LED nonlinearity effects," Proc. IEEE VTC (2011) pp. 1-5.

D. Derickson, M. Müller, Digital Communications: Test and Measurement. (Prentice Hall, 2008).

OSRAM Opto Semiconductors GmbHDatasheet: SFH 4501, SFH 4502, SFH 4503 High Power Infrared Emitter, (2008) http://catalog.osram-os.com.

A. Behravan, T. Eriksson, "PAPR and other measures for OFDM systems with nonlinearity," Proc 5th Int. Symp. Wireless Personal Multimedia Commun. (2002) pp. 149-153.

Advanced Photonix Inc.Datasheet: Red Enhanced High Performance Silicon Photodiode SD 445-14-21-305, (2006) http://www.advancedphotonix.com/ap_products/pdfs/SD445-14-21-305.pdf.

W. Jun, Y. Chenyang, "The influence of analog device on OFDM system," Proc. ICCT (2003) pp. 1060-1062.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.