Abstract

Dispersion properties of two types of three-dimensional plasma photonic crystals are theoretically investigated by a modified plane wave expansion method, which is composed of isotropic dielectric and nomagnetized plasma. The eigenvalue equations of two types of structures depend on the diamond lattice realization (dielectric spheres inserted in plasma background or vice versa), are deduced respectively. The band structures can be obtained by solving the nonlinear eigenvalue equations. The influences of relative dielectric constant and plasma frequency with different filling factors on dispersive relation are demonstrated, respectively. The numerical results show that the band structures can be modulated by the parameters for the two types of plasma photonic crystals.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription