Abstract

This paper presents a novel platform for the formation of cost-effective PCB-integrated optical waveguide sensors. The sensor design relies on the use of multimode polymer waveguides that can be formed directly on standard PCBs and commercially-available chemical dyes, enabling the integration of all essential sensor components (electronic, photonic, chemical) on low-cost substrates. Moreover, it enables the detection of multiple analytes from a single device by employing waveguide arrays functionalised with different chemical dyes. The devices can be manufactured with conventional methods of the PCB industry, such as solder-reflow processes and pick-and-place assembly techniques. As a proof of principle, a PCB-integrated ammonia gas sensor is fabricated on a FR4 substrate. The sensor operation relies on the change of the optical transmission characteristics of chemically functionalised optical waveguides in the presence of ammonia molecules. The fabrication and assembly of the sensor unit, as well as fundamental simulation and characterisation studies, are presented. The device achieves a sensitivity of approximately 30 ppm and a linear response up to 600 ppm at room temperature. Finally, the potential to detect multiple analytes from a single device is demonstrated using principal-component analysis.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. R. A. Potyrailo, S. E. Hobbs, G. M. Hieftje, "Optical waveguide sensors in analytical chemistry: Today's instrumentation, applications and trends for future development," Fresenius' J. Anal. Chem. 362, 349-373 (1998).
  2. M.-S. Steiner, A. Duerkop, O. S. Wolfbeis, "Optical methods for sensing glucose," Chem. Soc. Rev. 40, 4805-4839 (2011).
  3. F. S. Ligler, "Perspective on optical biosensors and integrated sensor systems," Anal. Chem. 81, 519-526 (2009).
  4. C. Monat, P. Domachuk, B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photon. 1, 106-114 (2007).
  5. A. L. Washburn, R. C. Bailey, "Photonics-on-a-chip: Recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications," Analyst 136, 227-236 (2011).
  6. H. H. Qazi, A. B. B. Mohammad, M. Akram, "Recent progress in optical chemical sensors," Sensors 12, 16522-16556 (2012).
  7. S. T. Lee, "A sensitive fibre optic pH sensor using multiple sol-gel coatings," J. Opt. A Pure Appl. Opt. 3, 355 (2001).
  8. T. Hutter, M. Horesh, S. Ruschin, "Method for increasing reliability in gas detection based on indicator gradient in a sensor array," Sens. Actuat. B: Chem. 152, 29-36 (2011).
  9. E. Thrush, "Monolithically integrated semiconductor fluorescence sensor for microfluidic applications," Sens. Actuat. B: Chem. 105, 393-399 (2005).
  10. K. S. Lee, H. L. T. Lee, R. J. Ram, "Polymer waveguide backplanes for optical sensor interfaces in microfluidics," Lab Chip 7, 1539-1545 (2007).
  11. O. S. Wolfbeis, "Materials for fluorescence-based optical chemical sensors," J. Mater. Chem. 15, 2657-2669 (2005).
  12. X. Fan, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chimica Acta 620, 8-26 (2008).
  13. B. J. Luff, "Integrated optical Mach–Zehnder biosensor," J. Lightw. Technol. 16, 583-589 (1998).
  14. K. Schmitt, "Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions," Biosens. Bioelectron. 22, 2591-2597 (2007).
  15. M. Ramuz, D. Leuenberger, L. Bürgi, "Optical biosensors based on integrated polymer light source and polymer photodiode," J. Polymer Sci. Part B: Polymer Phys. 49, 80-87 (2010).
  16. T. M. Chinowsky, "Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor," Sens. Actuators B: Chem. 91, 266-274 (2003).
  17. T. M. Chinowsky, "Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection," Biosens. Bioelectron. 22, 2268-2275 (2007).
  18. R. Irawan, "Polymer waveguide sensor for early diagnostic and wellness monitoring," Biosens. Bioelectron. 26, 3666-3669 (2011).
  19. L. Lin, "Integrated optical sensor in a digital microfluidic platform," IEEE Sensors J. 8, 628-635 (2008).
  20. C. S. Burke, "Development of an integrated optic oxygen sensor using a novel, generic platform," Analyst 130, 41-45 (2005).
  21. L. Hartley, K. V. I. S. Kaler, O. Yadid-Pecht, "Hybrid integration of an active pixel sensor and microfluidics for cytometry on a chip," IEEE Trans. Circuits Syst. I, Reg. Papers 54, 99-110 (2007).
  22. R. Dangel, "Polymer-waveguide-based board-level optical interconnect technology for datacom applications," IEEE Trans. Adv. Packag. 31, 759-767 (2008).
  23. X. Wang, "Fully embedded board-level optical interconnects from waveguide fabrication to device integration," J. Lightw. Technol. 26, 243-250 (2008).
  24. M. Karppinen, "Parallel optical interconnect between surface-mounted devices on FR4 printed wiring board using embedded waveguides and passive optical alignments—Art. no. 61850O," Micro-Optics, VCSELs, Photonic Interconnects II: Fabrication, Packaging, Integration 6185, O1850-O1850 (2006).
  25. N. Bamiedakis, "Optical transceiver integrated on PCB using electro-optic connectors compatible with pick-and-place assembly technology," Proc. Optoelectronic Interconnects and Component Integration IX (2010) pp. 76070O-76011.
  26. Y. Ishii, "SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections," IEEE Trans. Adv. Packag. 26, 122-127 (2003).
  27. I. Papakonstantinou, "Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs," IEEE Trans. Adv. Packag. 31, 502-511 (2008).
  28. H. Ma, A. K. Y. Jen, L. R. Dalton, "Polymer-based optical waveguides: Materials, processing, and devices," Adv. Mater. 14, 1339-1365 (2002).
  29. M. P. Immonen, M. Karppinen, J. K. Kivilahti, "Investigation of environmental reliability of optical polymer waveguides embedded on printed circuit boards," Microelectron. Reliab. 47, 363-371 (2007).
  30. L. Eldada, L. W. Shacklette, "Advances in polymer integrated optics," IEEE J. Sel. Topics Quantum Electron. 6, 54-68 (2000).
  31. A. W. Norris, "High reliability of silicone materials for use as polymer waveguides," Linear and Nonlinear Optics of Organic Materials III (2003) pp. 76-82.
  32. J. V. DeGroot, Jr."Cost-effective optical waveguide components for printed circuit applications," Proc. Passive Components and Fiber-based Devices IV (2007) pp. 678116-678112.
  33. A. Neyer, "Electrical optical circuit board using Polysiloxane optical waveguide layer," Pro. 55th Electron. Compo. Technol. Conf. (ECTC) (2005) pp. 246-250.
  34. A. Hashim, "Cost-effective 10 Gb/s polymer-based chip-to-chip optical interconnect," IET Optoelectron. 6, 140-146 (2012).
  35. B. Timmer, W. Olthuis, A. V. D. Berg, "Ammonia sensors and their applications—A review," Sens. Actuat. B: Chem. 107, 666-677 (2005).
  36. B. Buszewski, "Human exhaled air analytics: Biomarkers of diseases," Biomed. Chromatography 21, 553-566 (2007).
  37. W. Cao, Y. Duan, "Optical fiber-based evanescent ammonia sensor," Sens. Actuat. B: Chem. 110, 252-259 (2005).
  38. S. Korposh, "Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water," Mater. Chem. Phys. 133, 784-792 (2012).
  39. K. Schmitt, "Optical fiber waveguide sensor for the colorimetric detection of ammonia," Proc. SPIE 8066, Smart Sensors, Actuators, MEMS V (2011) pp. 1-6.
  40. V. Passaro, F. Dell'Olio, F. De Leonardis, "Ammonia optical sensing by microring resonators," Sensors 7, 2741-2749 (2007).
  41. A. Yimit, K. Itoh, M. Murabayashi, "Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor," Sens. Actuators B: Chem. 88, 239-245 (2003).
  42. Z.-M. Qi, "Composite optical waveguide composed of a tapered film of bromothymol blue evaporated onto a potassium ion-exchanged waveguide and its application as a guided wave absorption-based ammonia-gas sensor," Opt. Lett. 26, 629-631 (2001).
  43. Roithner LaserTechnik laser chips CHIP-635-P5 http://www.roithner-laser.com/ld_chips.html.
  44. Jenoptik photodiode chips EPC-660-0.5 http://www.jenoptik.com/cms/jenoptik.nsf/id/en_generic_productpage?open&pid=3639&ccm=020050010050.
  45. Fimmwave/FimmpropPhoton Design Ltd.U.K. www.photond.com.
  46. FinetechFINEPLACER micro hvr http://eu.finetech.de/.
  47. I. Jolliffe, Encyclopedia of Statistics in Behavioral Science (Wiley, 2005).
  48. S. Wold, K. Esbensen, P. Geladi, "Principal component analysis," Chem. Intell. Lab. Syst. 2, 37-52 (1987).
  49. University of Cambridge, Department of EngineeringEngineering for Clinical Practice Grants http://divf.eng.cam.ac.uk/ecp/Main/EcpWaveguide.

2012

H. H. Qazi, A. B. B. Mohammad, M. Akram, "Recent progress in optical chemical sensors," Sensors 12, 16522-16556 (2012).

A. Hashim, "Cost-effective 10 Gb/s polymer-based chip-to-chip optical interconnect," IET Optoelectron. 6, 140-146 (2012).

S. Korposh, "Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water," Mater. Chem. Phys. 133, 784-792 (2012).

2011

R. Irawan, "Polymer waveguide sensor for early diagnostic and wellness monitoring," Biosens. Bioelectron. 26, 3666-3669 (2011).

T. Hutter, M. Horesh, S. Ruschin, "Method for increasing reliability in gas detection based on indicator gradient in a sensor array," Sens. Actuat. B: Chem. 152, 29-36 (2011).

M.-S. Steiner, A. Duerkop, O. S. Wolfbeis, "Optical methods for sensing glucose," Chem. Soc. Rev. 40, 4805-4839 (2011).

A. L. Washburn, R. C. Bailey, "Photonics-on-a-chip: Recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications," Analyst 136, 227-236 (2011).

2010

M. Ramuz, D. Leuenberger, L. Bürgi, "Optical biosensors based on integrated polymer light source and polymer photodiode," J. Polymer Sci. Part B: Polymer Phys. 49, 80-87 (2010).

2009

F. S. Ligler, "Perspective on optical biosensors and integrated sensor systems," Anal. Chem. 81, 519-526 (2009).

2008

X. Fan, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chimica Acta 620, 8-26 (2008).

L. Lin, "Integrated optical sensor in a digital microfluidic platform," IEEE Sensors J. 8, 628-635 (2008).

I. Papakonstantinou, "Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs," IEEE Trans. Adv. Packag. 31, 502-511 (2008).

R. Dangel, "Polymer-waveguide-based board-level optical interconnect technology for datacom applications," IEEE Trans. Adv. Packag. 31, 759-767 (2008).

X. Wang, "Fully embedded board-level optical interconnects from waveguide fabrication to device integration," J. Lightw. Technol. 26, 243-250 (2008).

2007

V. Passaro, F. Dell'Olio, F. De Leonardis, "Ammonia optical sensing by microring resonators," Sensors 7, 2741-2749 (2007).

M. P. Immonen, M. Karppinen, J. K. Kivilahti, "Investigation of environmental reliability of optical polymer waveguides embedded on printed circuit boards," Microelectron. Reliab. 47, 363-371 (2007).

K. S. Lee, H. L. T. Lee, R. J. Ram, "Polymer waveguide backplanes for optical sensor interfaces in microfluidics," Lab Chip 7, 1539-1545 (2007).

K. Schmitt, "Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions," Biosens. Bioelectron. 22, 2591-2597 (2007).

T. M. Chinowsky, "Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection," Biosens. Bioelectron. 22, 2268-2275 (2007).

C. Monat, P. Domachuk, B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photon. 1, 106-114 (2007).

B. Buszewski, "Human exhaled air analytics: Biomarkers of diseases," Biomed. Chromatography 21, 553-566 (2007).

L. Hartley, K. V. I. S. Kaler, O. Yadid-Pecht, "Hybrid integration of an active pixel sensor and microfluidics for cytometry on a chip," IEEE Trans. Circuits Syst. I, Reg. Papers 54, 99-110 (2007).

2006

M. Karppinen, "Parallel optical interconnect between surface-mounted devices on FR4 printed wiring board using embedded waveguides and passive optical alignments—Art. no. 61850O," Micro-Optics, VCSELs, Photonic Interconnects II: Fabrication, Packaging, Integration 6185, O1850-O1850 (2006).

2005

C. S. Burke, "Development of an integrated optic oxygen sensor using a novel, generic platform," Analyst 130, 41-45 (2005).

B. Timmer, W. Olthuis, A. V. D. Berg, "Ammonia sensors and their applications—A review," Sens. Actuat. B: Chem. 107, 666-677 (2005).

E. Thrush, "Monolithically integrated semiconductor fluorescence sensor for microfluidic applications," Sens. Actuat. B: Chem. 105, 393-399 (2005).

O. S. Wolfbeis, "Materials for fluorescence-based optical chemical sensors," J. Mater. Chem. 15, 2657-2669 (2005).

W. Cao, Y. Duan, "Optical fiber-based evanescent ammonia sensor," Sens. Actuat. B: Chem. 110, 252-259 (2005).

2003

T. M. Chinowsky, "Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor," Sens. Actuators B: Chem. 91, 266-274 (2003).

A. Yimit, K. Itoh, M. Murabayashi, "Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor," Sens. Actuators B: Chem. 88, 239-245 (2003).

Y. Ishii, "SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections," IEEE Trans. Adv. Packag. 26, 122-127 (2003).

2002

H. Ma, A. K. Y. Jen, L. R. Dalton, "Polymer-based optical waveguides: Materials, processing, and devices," Adv. Mater. 14, 1339-1365 (2002).

2001

2000

L. Eldada, L. W. Shacklette, "Advances in polymer integrated optics," IEEE J. Sel. Topics Quantum Electron. 6, 54-68 (2000).

1998

R. A. Potyrailo, S. E. Hobbs, G. M. Hieftje, "Optical waveguide sensors in analytical chemistry: Today's instrumentation, applications and trends for future development," Fresenius' J. Anal. Chem. 362, 349-373 (1998).

B. J. Luff, "Integrated optical Mach–Zehnder biosensor," J. Lightw. Technol. 16, 583-589 (1998).

1987

S. Wold, K. Esbensen, P. Geladi, "Principal component analysis," Chem. Intell. Lab. Syst. 2, 37-52 (1987).

Adv. Mater.

H. Ma, A. K. Y. Jen, L. R. Dalton, "Polymer-based optical waveguides: Materials, processing, and devices," Adv. Mater. 14, 1339-1365 (2002).

Anal. Chem.

F. S. Ligler, "Perspective on optical biosensors and integrated sensor systems," Anal. Chem. 81, 519-526 (2009).

Anal. Chimica Acta

X. Fan, "Sensitive optical biosensors for unlabeled targets: A review," Anal. Chimica Acta 620, 8-26 (2008).

Analyst

A. L. Washburn, R. C. Bailey, "Photonics-on-a-chip: Recent advances in integrated waveguides as enabling detection elements for real-world, lab-on-a-chip biosensing applications," Analyst 136, 227-236 (2011).

C. S. Burke, "Development of an integrated optic oxygen sensor using a novel, generic platform," Analyst 130, 41-45 (2005).

Biomed. Chromatography

B. Buszewski, "Human exhaled air analytics: Biomarkers of diseases," Biomed. Chromatography 21, 553-566 (2007).

Biosens. Bioelectron.

R. Irawan, "Polymer waveguide sensor for early diagnostic and wellness monitoring," Biosens. Bioelectron. 26, 3666-3669 (2011).

Biosens. Bioelectron.

K. Schmitt, "Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions," Biosens. Bioelectron. 22, 2591-2597 (2007).

T. M. Chinowsky, "Portable 24-analyte surface plasmon resonance instruments for rapid, versatile biodetection," Biosens. Bioelectron. 22, 2268-2275 (2007).

Chem. Intell. Lab. Syst.

S. Wold, K. Esbensen, P. Geladi, "Principal component analysis," Chem. Intell. Lab. Syst. 2, 37-52 (1987).

Chem. Soc. Rev.

M.-S. Steiner, A. Duerkop, O. S. Wolfbeis, "Optical methods for sensing glucose," Chem. Soc. Rev. 40, 4805-4839 (2011).

Fresenius' J. Anal. Chem.

R. A. Potyrailo, S. E. Hobbs, G. M. Hieftje, "Optical waveguide sensors in analytical chemistry: Today's instrumentation, applications and trends for future development," Fresenius' J. Anal. Chem. 362, 349-373 (1998).

IEEE J. Sel. Topics Quantum Electron.

L. Eldada, L. W. Shacklette, "Advances in polymer integrated optics," IEEE J. Sel. Topics Quantum Electron. 6, 54-68 (2000).

IEEE Sensors J.

L. Lin, "Integrated optical sensor in a digital microfluidic platform," IEEE Sensors J. 8, 628-635 (2008).

IEEE Trans. Adv. Packag.

I. Papakonstantinou, "Low-cost, precision, self-alignment technique for coupling laser and photodiode arrays to polymer waveguide arrays on multilayer PCBs," IEEE Trans. Adv. Packag. 31, 502-511 (2008).

IEEE Trans. Adv. Packag.

Y. Ishii, "SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections," IEEE Trans. Adv. Packag. 26, 122-127 (2003).

R. Dangel, "Polymer-waveguide-based board-level optical interconnect technology for datacom applications," IEEE Trans. Adv. Packag. 31, 759-767 (2008).

IEEE Trans. Circuits Syst. I, Reg. Papers

L. Hartley, K. V. I. S. Kaler, O. Yadid-Pecht, "Hybrid integration of an active pixel sensor and microfluidics for cytometry on a chip," IEEE Trans. Circuits Syst. I, Reg. Papers 54, 99-110 (2007).

IET Optoelectron.

A. Hashim, "Cost-effective 10 Gb/s polymer-based chip-to-chip optical interconnect," IET Optoelectron. 6, 140-146 (2012).

J. Opt. A Pure Appl. Opt.

S. T. Lee, "A sensitive fibre optic pH sensor using multiple sol-gel coatings," J. Opt. A Pure Appl. Opt. 3, 355 (2001).

J. Lightw. Technol.

B. J. Luff, "Integrated optical Mach–Zehnder biosensor," J. Lightw. Technol. 16, 583-589 (1998).

X. Wang, "Fully embedded board-level optical interconnects from waveguide fabrication to device integration," J. Lightw. Technol. 26, 243-250 (2008).

J. Mater. Chem.

O. S. Wolfbeis, "Materials for fluorescence-based optical chemical sensors," J. Mater. Chem. 15, 2657-2669 (2005).

J. Polymer Sci. Part B: Polymer Phys.

M. Ramuz, D. Leuenberger, L. Bürgi, "Optical biosensors based on integrated polymer light source and polymer photodiode," J. Polymer Sci. Part B: Polymer Phys. 49, 80-87 (2010).

Lab Chip

K. S. Lee, H. L. T. Lee, R. J. Ram, "Polymer waveguide backplanes for optical sensor interfaces in microfluidics," Lab Chip 7, 1539-1545 (2007).

Mater. Chem. Phys.

S. Korposh, "Optical fibre long period grating with a nanoporous coating formed from silica nanoparticles for ammonia sensing in water," Mater. Chem. Phys. 133, 784-792 (2012).

Micro-Optics, VCSELs, Photonic Interconnects II: Fabrication, Packaging, Integration

M. Karppinen, "Parallel optical interconnect between surface-mounted devices on FR4 printed wiring board using embedded waveguides and passive optical alignments—Art. no. 61850O," Micro-Optics, VCSELs, Photonic Interconnects II: Fabrication, Packaging, Integration 6185, O1850-O1850 (2006).

Microelectron. Reliab.

M. P. Immonen, M. Karppinen, J. K. Kivilahti, "Investigation of environmental reliability of optical polymer waveguides embedded on printed circuit boards," Microelectron. Reliab. 47, 363-371 (2007).

Nat. Photon.

C. Monat, P. Domachuk, B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photon. 1, 106-114 (2007).

Opt. Lett.

Sens. Actuators B: Chem.

A. Yimit, K. Itoh, M. Murabayashi, "Detection of ammonia in the ppt range based on a composite optical waveguide pH sensor," Sens. Actuators B: Chem. 88, 239-245 (2003).

Sens. Actuat. B: Chem.

W. Cao, Y. Duan, "Optical fiber-based evanescent ammonia sensor," Sens. Actuat. B: Chem. 110, 252-259 (2005).

T. Hutter, M. Horesh, S. Ruschin, "Method for increasing reliability in gas detection based on indicator gradient in a sensor array," Sens. Actuat. B: Chem. 152, 29-36 (2011).

E. Thrush, "Monolithically integrated semiconductor fluorescence sensor for microfluidic applications," Sens. Actuat. B: Chem. 105, 393-399 (2005).

B. Timmer, W. Olthuis, A. V. D. Berg, "Ammonia sensors and their applications—A review," Sens. Actuat. B: Chem. 107, 666-677 (2005).

Sens. Actuators B: Chem.

T. M. Chinowsky, "Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor," Sens. Actuators B: Chem. 91, 266-274 (2003).

Sensors

H. H. Qazi, A. B. B. Mohammad, M. Akram, "Recent progress in optical chemical sensors," Sensors 12, 16522-16556 (2012).

V. Passaro, F. Dell'Olio, F. De Leonardis, "Ammonia optical sensing by microring resonators," Sensors 7, 2741-2749 (2007).

Other

University of Cambridge, Department of EngineeringEngineering for Clinical Practice Grants http://divf.eng.cam.ac.uk/ecp/Main/EcpWaveguide.

K. Schmitt, "Optical fiber waveguide sensor for the colorimetric detection of ammonia," Proc. SPIE 8066, Smart Sensors, Actuators, MEMS V (2011) pp. 1-6.

Roithner LaserTechnik laser chips CHIP-635-P5 http://www.roithner-laser.com/ld_chips.html.

Jenoptik photodiode chips EPC-660-0.5 http://www.jenoptik.com/cms/jenoptik.nsf/id/en_generic_productpage?open&pid=3639&ccm=020050010050.

Fimmwave/FimmpropPhoton Design Ltd.U.K. www.photond.com.

FinetechFINEPLACER micro hvr http://eu.finetech.de/.

I. Jolliffe, Encyclopedia of Statistics in Behavioral Science (Wiley, 2005).

A. W. Norris, "High reliability of silicone materials for use as polymer waveguides," Linear and Nonlinear Optics of Organic Materials III (2003) pp. 76-82.

J. V. DeGroot, Jr."Cost-effective optical waveguide components for printed circuit applications," Proc. Passive Components and Fiber-based Devices IV (2007) pp. 678116-678112.

A. Neyer, "Electrical optical circuit board using Polysiloxane optical waveguide layer," Pro. 55th Electron. Compo. Technol. Conf. (ECTC) (2005) pp. 246-250.

N. Bamiedakis, "Optical transceiver integrated on PCB using electro-optic connectors compatible with pick-and-place assembly technology," Proc. Optoelectronic Interconnects and Component Integration IX (2010) pp. 76070O-76011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.