Abstract

With the objectives of reducing power consumption, insertion loss, nonuniformity and crosstalk, optimal configurations for optical interconnection are derived, by leveraging the unequal characteristics at bar or cross state of microring switching elements. A novel and efficient heuristic is proposed for finding the optimum switching configuration. It is shown that the optimum average total insertion loss per path using 2 × 2 Basic Switching Element (2B-SE) achieves a 3.65-dB improvement for 128 × 128 switch size. The optimum average total insertion loss using 2B-SE in the worst-cast path is shown to be 7.2 dB less than the baseline values. Furthermore, for 128 × 128 switch size, the minimum improvement is 7.2 dB for the nonuniformity in the worst case, whereas the total crosstalk has a 2.43-dB improvement. The effect of non-uniform switch elements is also studied.

© 2013 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription