Abstract

We demonstrate a compact fiber Mach–Zehnder (MZ) interferometric electric field sensor by splicing a short section of single mode fiber between two sections of single mode fibers with a large lateral offset of 62.5 <i>µ</i>m, where the propylene carbonate is filled into the open arm of the interferometer. Based on the Kerr electro-optic effect of propylene carbonate, the applied intensive transient electric field can change the refractive index of propylene carbonate, which shifts the interferometric fringe. The electrical field intensity could be demodulated by monitoring the fringe shift. In the experiment, high voltages from 10.67 kV to 23.3 kV are applied to our sensor through parallel-plate electrodes. More than 150 kV/cm electrical field intensity in the middle place of the parallel-plate electrodes is measured when the voltage is 23.3 kV, and the sensitivity is ~0.1 w (v/m). Such kind of safe sensor has good stability, high reproducibility, compact size, lightweight and easy fabrication, making it attractive for applications in measuring different kinds of electric field, especially when the measurement space is limited or closed.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. D. C. Huang, J. J. Ruan, W. Wen, H. X. Li, Q. J. Zhao, W. Zheng, "Study on electromagnetic environment of UHV AC transmission lines," Power. Sys. Tech 31, 6-11 (2007).
  2. G. F. Wu, J. Y. Lu, F. Y. Shao, "Research on electromagnetic environment of the next voltage level of transmission system," Electr. Power 38, 24-27 (2005).
  3. M. Kanda, F. X. Ries, "A broadband isotropic real-time electric-field sensor using resistivity loaded dipole," IEEE Trans. Eletromagn. Compat. 23, 122-132 (1992).
  4. A. Schutte, H. Rodrigo, "Transient phenomena due to disconnect switching in high voltage substations," Proc. IEEE. 11th Int. Symp. HV Eng. (1999) pp. 258-261.
  5. J. Ramirez-Nino, M. J. O. Pacheco, J. Rodriguez, V. M. Castano, "A device for the X–Y measurement of electric Fields," Sci. Technol. 5, 1436-1442 (1994).
  6. Y. J. Hamasaki, H. Gotoh, M. Katoh, S. Takeachi, "An optical sensor for measurement of high electric field intensity," Electron. Lett 16, 406-407 (1980).
  7. Y. J. Rao, H. Gnewuch, C. N. Pannell, D. A. Jackson, "Electro-optic electric field sensor based on periodically poled LiNbO2," Electron. Lett 35, 596-597 (1999).
  8. F. Long, J. H. Zhang, C. Xie, Z. W. Yuan, "Applications of the Pockels effect to high voltage measurement," Proc. 8th ICEMI (2007) pp. 495-499.
  9. M. C. Taplamacioglu, K. Hidaka, "Pockels high-voltage measurement system," IEEE Trans. Power. Del. 15, 8-13 (2000).
  10. E. C. Cassidy, R. E. Hebner, M. Zahn, R. J. Sojka, "Kerr-effect studies of an insulating liquid under varied high-voltage conditions," IEEE Trans. Dielect. Electr. Insul. 9, 43-56 (1974).
  11. A. Helgesonl, M. Zahn, "Kerr electro-optic measurements of space charge effects in HV pulsed," IEEE Trans. Dielect. Electr. Insul. 9, 838-844 (2002).
  12. B. Sun, F. S. Chen, "Integrated optical E-field sensor for measurement of power frequency electric field," Semicond. Optoelectron. 31, 202-204 (2010).
  13. R. Zeng, B. Wang, Z. Q. Yu, W. Y. Chen, "Design and application of an integrated electro-optic sensor for intensive electric field measurement," IEEE Trans. Dielect. Electr. Insul. 18, 312-319 (2011).
  14. H. S. Jung, "Electro-optic electric field sensor utilizing Ti: LiNbO3 symmetric Mach–Zehnder interferometers," J. Opt. Soc. Amer. 16, 47-52 (2012).
  15. Howerton, M. Mcright, Bulmer, Burns, "Linear 1*2 directional coupler for electromagnetic field detection," Appl. Phys. Lett. 52, 1850-1852 (1988).
  16. N. A. F. Taeger, F. Rahmatian, "Integrated optics pockels cell high-voltage sensor," IEEE Trans. Power. Del. 10, 127-134 (1995).
  17. M. T. Azar, B. Sutapun, T. Srikhirin, J. Lando, G. Adamovsky, "Fiber optic electric field sensors using polymer-dispersed liquid crystal coatings and evanescent field interactions," Sens. Actuat. A 84, 134-139 (2000).
  18. V. M. N. Passaroa, F. Dell'Olio, F. De Leonardis, "Electromagnetic field photonic sensors," Prog. Quantum Electron. 30, 45-73 (2006).
  19. S. Mathews, G. Farrell, Y. Semenova, "All-fiber polarimetric electric field sensing using liquid cryatal infiltrated photonic crystal fibers," Sens. Actuat. A 167, 54-59 (2011).
  20. F. Liu, W. H. Bi, X. Guo, "Optical voltage transducer based on modular interference in highly elliptical-core polarization maintaining fiber," Acta. Optica. Sinica 29, 219-223 (2008).
  21. T. Zhu, Y. J. Rao, Q. J. Mo, "Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating," IEEE Photonic. Technol. Lett. 17, 2700-2702 (2005).
  22. Y. E. Fan, T. Zhu, L. L. Shi, Y. J. Rao, "Highly sensitive refractive index sensor based on two cascaded especial long-period fiber gratings with rotary refractive index modulation," Appl. Opt. 50, 4604-4610 (2011).
  23. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, "Thinned fiber Bragg Gratings as high sensitivity refractive index sensor," IEEE Photonic. Technol. Lett. 16, 1149-1151 (2004).
  24. T. Schubert, N. Haase, H. Kuck, R. Gottfried-Gottfried, "Refractive-index measurement using an integrated Mach–Zehnder interferometer," Sens. Actuat. A 60, 108-112 (1997).
  25. C. R. Liao, Y. Wang, D. N. Wang, M. W. Yang, "Fiber in-line Mach–Zehnder interferometer embedded in FBG for simultaneous refractive index and temperature measurement," IEEE Photonic. Technol. Lett. 22, 1686-1688 (2010).
  26. B. T. Zhao, S. H. Scott, B. Jack, W. Bock, P. Greig, "Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers," IEEE Photonic. Technol. Lett. 20, 626-628 (2008).
  27. Y. Wang, M. D. Yang, S. Liu, P. Lu, "Fiber in-line Mach–Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity," J. Opt. Soc. Amer. B 27, 370-374 (2010).
  28. D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, M. Deng, D. Wu, J. Yao, "In-fiber Fabry-perot and Mach—Zehnder interferometers based on hollow optical fiber fabricated by arc fusion splicing with small lateral offsets," Opt. Commun. 284, 5311-5314 (2011).
  29. Z. Markus, T. Tatsuo, "High voltage electric field and space-charge distributions in highly purified water," J. Appl. Phys 54, 4762-4775 (1983).

2012 (1)

H. S. Jung, "Electro-optic electric field sensor utilizing Ti: LiNbO3 symmetric Mach–Zehnder interferometers," J. Opt. Soc. Amer. 16, 47-52 (2012).

2011 (4)

R. Zeng, B. Wang, Z. Q. Yu, W. Y. Chen, "Design and application of an integrated electro-optic sensor for intensive electric field measurement," IEEE Trans. Dielect. Electr. Insul. 18, 312-319 (2011).

S. Mathews, G. Farrell, Y. Semenova, "All-fiber polarimetric electric field sensing using liquid cryatal infiltrated photonic crystal fibers," Sens. Actuat. A 167, 54-59 (2011).

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, M. Deng, D. Wu, J. Yao, "In-fiber Fabry-perot and Mach—Zehnder interferometers based on hollow optical fiber fabricated by arc fusion splicing with small lateral offsets," Opt. Commun. 284, 5311-5314 (2011).

Y. E. Fan, T. Zhu, L. L. Shi, Y. J. Rao, "Highly sensitive refractive index sensor based on two cascaded especial long-period fiber gratings with rotary refractive index modulation," Appl. Opt. 50, 4604-4610 (2011).

2010 (3)

Y. Wang, M. D. Yang, S. Liu, P. Lu, "Fiber in-line Mach–Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity," J. Opt. Soc. Amer. B 27, 370-374 (2010).

C. R. Liao, Y. Wang, D. N. Wang, M. W. Yang, "Fiber in-line Mach–Zehnder interferometer embedded in FBG for simultaneous refractive index and temperature measurement," IEEE Photonic. Technol. Lett. 22, 1686-1688 (2010).

B. Sun, F. S. Chen, "Integrated optical E-field sensor for measurement of power frequency electric field," Semicond. Optoelectron. 31, 202-204 (2010).

2008 (2)

F. Liu, W. H. Bi, X. Guo, "Optical voltage transducer based on modular interference in highly elliptical-core polarization maintaining fiber," Acta. Optica. Sinica 29, 219-223 (2008).

B. T. Zhao, S. H. Scott, B. Jack, W. Bock, P. Greig, "Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers," IEEE Photonic. Technol. Lett. 20, 626-628 (2008).

2007 (1)

D. C. Huang, J. J. Ruan, W. Wen, H. X. Li, Q. J. Zhao, W. Zheng, "Study on electromagnetic environment of UHV AC transmission lines," Power. Sys. Tech 31, 6-11 (2007).

2006 (1)

V. M. N. Passaroa, F. Dell'Olio, F. De Leonardis, "Electromagnetic field photonic sensors," Prog. Quantum Electron. 30, 45-73 (2006).

2005 (2)

G. F. Wu, J. Y. Lu, F. Y. Shao, "Research on electromagnetic environment of the next voltage level of transmission system," Electr. Power 38, 24-27 (2005).

T. Zhu, Y. J. Rao, Q. J. Mo, "Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating," IEEE Photonic. Technol. Lett. 17, 2700-2702 (2005).

2004 (1)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, "Thinned fiber Bragg Gratings as high sensitivity refractive index sensor," IEEE Photonic. Technol. Lett. 16, 1149-1151 (2004).

2002 (1)

A. Helgesonl, M. Zahn, "Kerr electro-optic measurements of space charge effects in HV pulsed," IEEE Trans. Dielect. Electr. Insul. 9, 838-844 (2002).

2000 (2)

M. C. Taplamacioglu, K. Hidaka, "Pockels high-voltage measurement system," IEEE Trans. Power. Del. 15, 8-13 (2000).

M. T. Azar, B. Sutapun, T. Srikhirin, J. Lando, G. Adamovsky, "Fiber optic electric field sensors using polymer-dispersed liquid crystal coatings and evanescent field interactions," Sens. Actuat. A 84, 134-139 (2000).

1999 (1)

Y. J. Rao, H. Gnewuch, C. N. Pannell, D. A. Jackson, "Electro-optic electric field sensor based on periodically poled LiNbO2," Electron. Lett 35, 596-597 (1999).

1997 (1)

T. Schubert, N. Haase, H. Kuck, R. Gottfried-Gottfried, "Refractive-index measurement using an integrated Mach–Zehnder interferometer," Sens. Actuat. A 60, 108-112 (1997).

1995 (1)

N. A. F. Taeger, F. Rahmatian, "Integrated optics pockels cell high-voltage sensor," IEEE Trans. Power. Del. 10, 127-134 (1995).

1994 (1)

J. Ramirez-Nino, M. J. O. Pacheco, J. Rodriguez, V. M. Castano, "A device for the X–Y measurement of electric Fields," Sci. Technol. 5, 1436-1442 (1994).

1992 (1)

M. Kanda, F. X. Ries, "A broadband isotropic real-time electric-field sensor using resistivity loaded dipole," IEEE Trans. Eletromagn. Compat. 23, 122-132 (1992).

1988 (1)

Howerton, M. Mcright, Bulmer, Burns, "Linear 1*2 directional coupler for electromagnetic field detection," Appl. Phys. Lett. 52, 1850-1852 (1988).

1983 (1)

Z. Markus, T. Tatsuo, "High voltage electric field and space-charge distributions in highly purified water," J. Appl. Phys 54, 4762-4775 (1983).

1980 (1)

Y. J. Hamasaki, H. Gotoh, M. Katoh, S. Takeachi, "An optical sensor for measurement of high electric field intensity," Electron. Lett 16, 406-407 (1980).

1974 (1)

E. C. Cassidy, R. E. Hebner, M. Zahn, R. J. Sojka, "Kerr-effect studies of an insulating liquid under varied high-voltage conditions," IEEE Trans. Dielect. Electr. Insul. 9, 43-56 (1974).

Acta. Optica. Sinica (1)

F. Liu, W. H. Bi, X. Guo, "Optical voltage transducer based on modular interference in highly elliptical-core polarization maintaining fiber," Acta. Optica. Sinica 29, 219-223 (2008).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Howerton, M. Mcright, Bulmer, Burns, "Linear 1*2 directional coupler for electromagnetic field detection," Appl. Phys. Lett. 52, 1850-1852 (1988).

Electr. Power (1)

G. F. Wu, J. Y. Lu, F. Y. Shao, "Research on electromagnetic environment of the next voltage level of transmission system," Electr. Power 38, 24-27 (2005).

Electron. Lett (2)

Y. J. Hamasaki, H. Gotoh, M. Katoh, S. Takeachi, "An optical sensor for measurement of high electric field intensity," Electron. Lett 16, 406-407 (1980).

Y. J. Rao, H. Gnewuch, C. N. Pannell, D. A. Jackson, "Electro-optic electric field sensor based on periodically poled LiNbO2," Electron. Lett 35, 596-597 (1999).

IEEE Photonic. Technol. Lett. (4)

T. Zhu, Y. J. Rao, Q. J. Mo, "Simultaneous measurement of refractive index and temperature using a single ultra-long-period fiber grating," IEEE Photonic. Technol. Lett. 17, 2700-2702 (2005).

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano, "Thinned fiber Bragg Gratings as high sensitivity refractive index sensor," IEEE Photonic. Technol. Lett. 16, 1149-1151 (2004).

C. R. Liao, Y. Wang, D. N. Wang, M. W. Yang, "Fiber in-line Mach–Zehnder interferometer embedded in FBG for simultaneous refractive index and temperature measurement," IEEE Photonic. Technol. Lett. 22, 1686-1688 (2010).

B. T. Zhao, S. H. Scott, B. Jack, W. Bock, P. Greig, "Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers," IEEE Photonic. Technol. Lett. 20, 626-628 (2008).

IEEE Trans. Dielect. Electr. Insul. (3)

R. Zeng, B. Wang, Z. Q. Yu, W. Y. Chen, "Design and application of an integrated electro-optic sensor for intensive electric field measurement," IEEE Trans. Dielect. Electr. Insul. 18, 312-319 (2011).

E. C. Cassidy, R. E. Hebner, M. Zahn, R. J. Sojka, "Kerr-effect studies of an insulating liquid under varied high-voltage conditions," IEEE Trans. Dielect. Electr. Insul. 9, 43-56 (1974).

A. Helgesonl, M. Zahn, "Kerr electro-optic measurements of space charge effects in HV pulsed," IEEE Trans. Dielect. Electr. Insul. 9, 838-844 (2002).

IEEE Trans. Eletromagn. Compat. (1)

M. Kanda, F. X. Ries, "A broadband isotropic real-time electric-field sensor using resistivity loaded dipole," IEEE Trans. Eletromagn. Compat. 23, 122-132 (1992).

IEEE Trans. Power. Del. (2)

N. A. F. Taeger, F. Rahmatian, "Integrated optics pockels cell high-voltage sensor," IEEE Trans. Power. Del. 10, 127-134 (1995).

M. C. Taplamacioglu, K. Hidaka, "Pockels high-voltage measurement system," IEEE Trans. Power. Del. 15, 8-13 (2000).

J. Appl. Phys (1)

Z. Markus, T. Tatsuo, "High voltage electric field and space-charge distributions in highly purified water," J. Appl. Phys 54, 4762-4775 (1983).

J. Opt. Soc. Amer. (1)

H. S. Jung, "Electro-optic electric field sensor utilizing Ti: LiNbO3 symmetric Mach–Zehnder interferometers," J. Opt. Soc. Amer. 16, 47-52 (2012).

J. Opt. Soc. Amer. B (1)

Y. Wang, M. D. Yang, S. Liu, P. Lu, "Fiber in-line Mach–Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity," J. Opt. Soc. Amer. B 27, 370-374 (2010).

Opt. Commun. (1)

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, M. Deng, D. Wu, J. Yao, "In-fiber Fabry-perot and Mach—Zehnder interferometers based on hollow optical fiber fabricated by arc fusion splicing with small lateral offsets," Opt. Commun. 284, 5311-5314 (2011).

Power. Sys. Tech (1)

D. C. Huang, J. J. Ruan, W. Wen, H. X. Li, Q. J. Zhao, W. Zheng, "Study on electromagnetic environment of UHV AC transmission lines," Power. Sys. Tech 31, 6-11 (2007).

Prog. Quantum Electron. (1)

V. M. N. Passaroa, F. Dell'Olio, F. De Leonardis, "Electromagnetic field photonic sensors," Prog. Quantum Electron. 30, 45-73 (2006).

Sci. Technol. (1)

J. Ramirez-Nino, M. J. O. Pacheco, J. Rodriguez, V. M. Castano, "A device for the X–Y measurement of electric Fields," Sci. Technol. 5, 1436-1442 (1994).

Semicond. Optoelectron. (1)

B. Sun, F. S. Chen, "Integrated optical E-field sensor for measurement of power frequency electric field," Semicond. Optoelectron. 31, 202-204 (2010).

Sens. Actuat. A (3)

S. Mathews, G. Farrell, Y. Semenova, "All-fiber polarimetric electric field sensing using liquid cryatal infiltrated photonic crystal fibers," Sens. Actuat. A 167, 54-59 (2011).

M. T. Azar, B. Sutapun, T. Srikhirin, J. Lando, G. Adamovsky, "Fiber optic electric field sensors using polymer-dispersed liquid crystal coatings and evanescent field interactions," Sens. Actuat. A 84, 134-139 (2000).

T. Schubert, N. Haase, H. Kuck, R. Gottfried-Gottfried, "Refractive-index measurement using an integrated Mach–Zehnder interferometer," Sens. Actuat. A 60, 108-112 (1997).

Other (2)

F. Long, J. H. Zhang, C. Xie, Z. W. Yuan, "Applications of the Pockels effect to high voltage measurement," Proc. 8th ICEMI (2007) pp. 495-499.

A. Schutte, H. Rodrigo, "Transient phenomena due to disconnect switching in high voltage substations," Proc. IEEE. 11th Int. Symp. HV Eng. (1999) pp. 258-261.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.