Abstract

In this paper, a signal shaping framework for optical wireless communication (OWC) is proposed. The framework is tailored to the single-carrier pulse modulation techniques, such as multi-level pulse position modulation (<i>M</i>-PPM) and multi-level pulse amplitude modulation (<i>M</i>-PAM), and to multi-carrier transmission realized through multi-level quadrature amplitude modulation (<i>M</i>-QAM) with orthogonal frequency division multiplexing (OFDM). Optical OFDM (O-OFDM) transmission is generally accomplished via direct-current-biased optical OFDM (DCO-OFDM) or asymmetrically clipped optical OFDM (ACO-OFDM). Through scaling and DC-biasing the transmitted signal is optimally conditioned in accord with the optical power constraints of the transmitter front-end, i.e., minimum, average and maximum radiated optical power. The OWC systems are compared in a novel fashion in terms of electrical signal-to-noise ratio (SNR) requirement and spectral efficiency as the signal bandwidth exceeds the coherence bandwidth of the optical wireless channel. In order to counter the channel effect at high data rates, computationally feasible equalization techniques such as linear feed-forward equalization (FFE) and nonlinear decision-feedback equalization (DFE) are employed for single-carrier transmission, while multi-carrier transmission combines bit and power loading with single-tap equalization. It is shown that DCO-OFDM has the highest spectral efficiency for a given electrical SNR at high data rates when the additional direct current (DC) bias power is neglected. When the DC bias power is counted towards the signal power, DCO-OFDM outperforms PAM with FFE, and it approaches the performance of the more computationally intensive PAM with DFE.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. F. R. Gfeller, U. Bapst, "Wireless in-house data communication via diffuse infrared radiation," Proc. IEEE 67, 1474-1486 (1979).
  2. Y. Tanaka, T. Komine, S. Haruyama, M. Nakagawa, "Indoor visible communication utilizing plural white LEDs as lighting," Proc. 12th IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications (2001) pp. 81-85.
  3. J. M. Kahn, J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).
  4. J. G. Proakis, Digital Communications (McGraw-Hill Higher Education, 2000).
  5. H. Elgala, R. Mesleh, H. Haas, "Practical considerations for indoor wireless optical system implementation using OFDM," Proc. IEEE 10th Int. Conf. Telecommunications (ConTel) (2009).
  6. J. Armstrong, "OFDM for optical communications," J. Lightw. Technol. 27, 189-204 (2009).
  7. J. Campello, "Practical bit loading for DMT," Proc. IEEE Int. Conf. Communications (IEEE ICC 1999) (1999) pp. 801-805.
  8. H. E. Levin, "A complete and optimal data allocation method for practical discrete multitone systems," Proc. IEEE Global Telecommunications Conf. (IEEE GLOBECOM 2001) (2001) pp. 369-374.
  9. J. B. Carruthers, J. M. Kahn, "Multiple-subcarrier modulation for nondirected wireless infrared communication," IEEE J. Select. Areas Commun. 14, 538-546 (1996).
  10. J. Armstrong, A. Lowery, "Power efficient optical OFDM," Electron. Lett. 42, 370-372 (2006).
  11. Vishay SemiconductorsDatasheet: TSHG8200 High Speed Infrared Emitting Diode, 830 nm, GaAlAs Double Hetero, (2008.) http://www.vishay.com/docs/84755/tshg8200.pdf..
  12. BS EN 62471:2008Photobiological Safety of Lamps and Lamp Systems, BSI British Standards Std., (2008).
  13. S. Dimitrov, S. Sinanovic, H. Haas, "Clipping noise in OFDM-based optical wireless communication systems," IEEE Trans. Commun. (IEEE TCOM) .
  14. R. J. Green, H. Joshi, M. D. Higgins, M. S. Leeson, "Recent developments in indoor optical wireless," IET Commun. 2, 3-10 (2008).
  15. J. Armstrong, B. J. C. Schmidt, "Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN," IEEE Commun. Lett. 12, 343-345 (2008).
  16. D. Tse, P. Viswanath, Fundamentals of Wireless Communication (Cambridge Univ. Press, 2005).
  17. H. Elgala, R. Mesleh, H. Haas, "Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs," Inderscience Int. J. Ultra Wideband Commun. Syst. (IJUWBCS) 1, 143-150 (2009).
  18. T. S. Rappaport, Wireless Communications: Principles and Practice (Prentice Hall PTR, 2002).
  19. S. Dimitrov, R. Mesleh, H. Haas, M. Cappitelli, M. Olbert, E. Bassow, "On the SIR of a cellular infrared optical wireless system for an aircraft," IEEE J. Select. Areas Commun. (IEEE JSAC) 27, 1623-1638 (2009).
  20. S. Dimitrov, H. Haas, M. Cappitelli, M. Olbert, "On the throughput of an OFDM-based cellular optical wireless system for an aircraft cabin," Proc. Eur. Conf. Antennas and Propagation (EuCAP 2011) (2011).
  21. D. Dardari, V. Tralli, A. Vaccari, "A theoretical characterization of nonlinear distortion effects in OFDM systems," IEEE Trans. Commun. 48, 1755-1764 (2000).
  22. J. Li, X. Zhang, Q. Gao, Y. Luo, D. Gu, "Exact BEP analysis for coherent M-arry PAM and QAM over AWGN and Rayleigh fading channels," Proc. IEEE Vehicular Technology Conf. (VTC 2008-Spring) (2008) pp. 390-394.
  23. J. Bussgang, Cross Correlation Function of Amplitude-Distorted Gaussian Signals, Research Laboratory for Electronics, Massachusetts Institute of TechnologyCambridgeMA Technical Report 216 (1952).
  24. J. Rice, Mathematical Statistics and Data Analysis (Duxbury, 1995).
  25. P. K. Vitthaladevuni, M.-S. Alouini, J. C. Kieffer, "Exact BER computation for cross QAM constellations," IEEE Trans. Wireless Commun. 4, 3039-3050 (2005).
  26. J. Smith, "Odd-bit quadrature amplitude-shift keying," IEEE Trans. Commun. 23, 385-389 (1975).
  27. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge Univ. Press, 2004).

2009 (3)

J. Armstrong, "OFDM for optical communications," J. Lightw. Technol. 27, 189-204 (2009).

H. Elgala, R. Mesleh, H. Haas, "Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs," Inderscience Int. J. Ultra Wideband Commun. Syst. (IJUWBCS) 1, 143-150 (2009).

S. Dimitrov, R. Mesleh, H. Haas, M. Cappitelli, M. Olbert, E. Bassow, "On the SIR of a cellular infrared optical wireless system for an aircraft," IEEE J. Select. Areas Commun. (IEEE JSAC) 27, 1623-1638 (2009).

2008 (2)

R. J. Green, H. Joshi, M. D. Higgins, M. S. Leeson, "Recent developments in indoor optical wireless," IET Commun. 2, 3-10 (2008).

J. Armstrong, B. J. C. Schmidt, "Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN," IEEE Commun. Lett. 12, 343-345 (2008).

2006 (1)

J. Armstrong, A. Lowery, "Power efficient optical OFDM," Electron. Lett. 42, 370-372 (2006).

2005 (1)

P. K. Vitthaladevuni, M.-S. Alouini, J. C. Kieffer, "Exact BER computation for cross QAM constellations," IEEE Trans. Wireless Commun. 4, 3039-3050 (2005).

2000 (1)

D. Dardari, V. Tralli, A. Vaccari, "A theoretical characterization of nonlinear distortion effects in OFDM systems," IEEE Trans. Commun. 48, 1755-1764 (2000).

1997 (1)

J. M. Kahn, J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).

1996 (1)

J. B. Carruthers, J. M. Kahn, "Multiple-subcarrier modulation for nondirected wireless infrared communication," IEEE J. Select. Areas Commun. 14, 538-546 (1996).

1979 (1)

F. R. Gfeller, U. Bapst, "Wireless in-house data communication via diffuse infrared radiation," Proc. IEEE 67, 1474-1486 (1979).

1975 (1)

J. Smith, "Odd-bit quadrature amplitude-shift keying," IEEE Trans. Commun. 23, 385-389 (1975).

Electron. Lett. (1)

J. Armstrong, A. Lowery, "Power efficient optical OFDM," Electron. Lett. 42, 370-372 (2006).

IEEE J. Select. Areas Commun. (1)

J. B. Carruthers, J. M. Kahn, "Multiple-subcarrier modulation for nondirected wireless infrared communication," IEEE J. Select. Areas Commun. 14, 538-546 (1996).

IEEE Trans. Commun. (1)

D. Dardari, V. Tralli, A. Vaccari, "A theoretical characterization of nonlinear distortion effects in OFDM systems," IEEE Trans. Commun. 48, 1755-1764 (2000).

IEEE Commun. Lett. (1)

J. Armstrong, B. J. C. Schmidt, "Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN," IEEE Commun. Lett. 12, 343-345 (2008).

IEEE J. Select. Areas Commun. (IEEE JSAC) (1)

S. Dimitrov, R. Mesleh, H. Haas, M. Cappitelli, M. Olbert, E. Bassow, "On the SIR of a cellular infrared optical wireless system for an aircraft," IEEE J. Select. Areas Commun. (IEEE JSAC) 27, 1623-1638 (2009).

IEEE Trans. Commun. (IEEE TCOM) (1)

S. Dimitrov, S. Sinanovic, H. Haas, "Clipping noise in OFDM-based optical wireless communication systems," IEEE Trans. Commun. (IEEE TCOM) .

IEEE Trans. Commun. (1)

J. Smith, "Odd-bit quadrature amplitude-shift keying," IEEE Trans. Commun. 23, 385-389 (1975).

IEEE Trans. Wireless Commun. (1)

P. K. Vitthaladevuni, M.-S. Alouini, J. C. Kieffer, "Exact BER computation for cross QAM constellations," IEEE Trans. Wireless Commun. 4, 3039-3050 (2005).

IET Commun. (1)

R. J. Green, H. Joshi, M. D. Higgins, M. S. Leeson, "Recent developments in indoor optical wireless," IET Commun. 2, 3-10 (2008).

Inderscience Int. J. Ultra Wideband Commun. Syst. (IJUWBCS) (1)

H. Elgala, R. Mesleh, H. Haas, "Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs," Inderscience Int. J. Ultra Wideband Commun. Syst. (IJUWBCS) 1, 143-150 (2009).

J. Lightw. Technol. (1)

J. Armstrong, "OFDM for optical communications," J. Lightw. Technol. 27, 189-204 (2009).

Proc. IEEE (2)

F. R. Gfeller, U. Bapst, "Wireless in-house data communication via diffuse infrared radiation," Proc. IEEE 67, 1474-1486 (1979).

J. M. Kahn, J. R. Barry, "Wireless infrared communications," Proc. IEEE 85, 265-298 (1997).

Other (14)

J. G. Proakis, Digital Communications (McGraw-Hill Higher Education, 2000).

H. Elgala, R. Mesleh, H. Haas, "Practical considerations for indoor wireless optical system implementation using OFDM," Proc. IEEE 10th Int. Conf. Telecommunications (ConTel) (2009).

Y. Tanaka, T. Komine, S. Haruyama, M. Nakagawa, "Indoor visible communication utilizing plural white LEDs as lighting," Proc. 12th IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications (2001) pp. 81-85.

J. Campello, "Practical bit loading for DMT," Proc. IEEE Int. Conf. Communications (IEEE ICC 1999) (1999) pp. 801-805.

H. E. Levin, "A complete and optimal data allocation method for practical discrete multitone systems," Proc. IEEE Global Telecommunications Conf. (IEEE GLOBECOM 2001) (2001) pp. 369-374.

Vishay SemiconductorsDatasheet: TSHG8200 High Speed Infrared Emitting Diode, 830 nm, GaAlAs Double Hetero, (2008.) http://www.vishay.com/docs/84755/tshg8200.pdf..

BS EN 62471:2008Photobiological Safety of Lamps and Lamp Systems, BSI British Standards Std., (2008).

T. S. Rappaport, Wireless Communications: Principles and Practice (Prentice Hall PTR, 2002).

S. Dimitrov, H. Haas, M. Cappitelli, M. Olbert, "On the throughput of an OFDM-based cellular optical wireless system for an aircraft cabin," Proc. Eur. Conf. Antennas and Propagation (EuCAP 2011) (2011).

D. Tse, P. Viswanath, Fundamentals of Wireless Communication (Cambridge Univ. Press, 2005).

S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge Univ. Press, 2004).

J. Li, X. Zhang, Q. Gao, Y. Luo, D. Gu, "Exact BEP analysis for coherent M-arry PAM and QAM over AWGN and Rayleigh fading channels," Proc. IEEE Vehicular Technology Conf. (VTC 2008-Spring) (2008) pp. 390-394.

J. Bussgang, Cross Correlation Function of Amplitude-Distorted Gaussian Signals, Research Laboratory for Electronics, Massachusetts Institute of TechnologyCambridgeMA Technical Report 216 (1952).

J. Rice, Mathematical Statistics and Data Analysis (Duxbury, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.