Abstract

Microstructured optical fibers (MOFs) achieve their desired performance via a pattern of holes that run trough the whole length of the fiber. The variation of the hole pattern allows the production of a variety of optical effects. However, the cross-sectional hole structure can be different from that designed in the preform, due to the combined effects of surface tension and internal pressure. The present paper focuses on the comparison between experiments and numerical calculation of a six hole-optical fiber taking into account the effects of surface tension and internal hole-pressure, since those are of essential importance during drawing. It is shown that the numerical computations deliver reliable results for practical applications and can be used as a predictive tool for fiber development, as long as the inner pressure or the temperature do not exceed too high values.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription