Abstract

We demonstrate a high-performance Brillouin optical time-domain analysis (BOTDA) system with an extended sensing range by combining frequency-division multiplexing and in-line Erbium doped fiber amplifiers (EDFAs). The frequency-division multiplexing BOTDA features multiple sections of fibers with different Brillouin frequency shifts, and it reduces the effective Brillouin interaction length to one resonant Brillouin frequency section rather than the entire length of the sensing fiber, so that the power of CW probe of BOTDA can be increased to enhance the Brillouin signal within individual sections and consequently extend the sensing range combined with high strain or temperature resolution with negligible pump depletion. In addition, in-line EDFAs placed between spans are used to compensate the fiber loss for similar Brillouin gains in each span. In experiment, a 150-km sensing range is achieved by dividing the sensing fibers into two spans of equal length and using two types of fibers in each span. Using the differential pulse-width pair technique, a 100/120 ns pulse pair is used to realize a 2-m spatial resolution and a measurement accuracy of 1.5°C/30 με at the end of the sensing fibers.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription