Abstract

Based on the previously proposed concept of a lab on a fiber (LOF) and an LOF-based platform for detecting trace vapors of TNT explosives, in this paper, we study the compatibility of the LOF device with a preconcentration unit. We report the detail investigation of factors that crucially affect the overall performance of this LOF platform. From a theoretical perspective, we investigate the efficiency of a light source formed at the fiber tip on sensory film excitation. Experimentally, we demonstrate the much faster response time of the LOF over a sensory film on a bulky planar glass substrate. We also evaluate the following factors that significantly impact the sensitivity of the instrumentation system: 1) the proper bond between the sensory film and the fiber surface; 2) the concentration of polymer solution for thin-film formation; and 3) the degradation of thin film in the presence of ambient light and the oxygen content in the air.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. J. Ma, A. Kos, W. J. Bock, X. Li, H. Nguyen, Z. Y. Wang, A. Cusano, "Lab-on-a-fiber: Building a fiber-optic sensing platform for low-cost and high-performance trace vapor TNT detection," Proc. Int. Soc. Opt. Eng./ 4th Eur. Workshop Opt. Fiber Sens. (2010) pp. 76531E-1-76531E-4.
  2. J. Ma, A. Kos, W. J. Bock, X. Li, H. Nguyen, Z. Y. Wang, A. Cusano, "TNT vapor detection based on a Lab-on-a-fiber: Achieving a millimeter-scale sensing element on fiber," IEEE Sens. J. 12, 213-217 (2012).
  3. J. Ma, A. Kos, W. J. Bock, X. Li, H. Nguyen, Z. Y. Wang, A. Cusano, "Enabling low-cost, high-performance vapor-phase TNT detection by optimizing multimode fiber sensing platform," Proc. Int. Soc. Opt. Eng./ 21st Int. Conf. Opt. Fiber Sens. (2011) pp. 77535M-1-76535M-4.
  4. H. H. Nguyen, X. Z. Li, N. Wang, Z. Y. Wang, J. Ma, W. J. Bock, D. Ma, "Fiber-optic detection of explosives using readily available fluorescent polymers," Macromolecules 42, 921-926 (2009).
  5. L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, F. S. Ligler, "Detection of TNT in water using an evanescent wave fiber optic biosensor," Anal. Chem. 67, 2431-2435 (1995).
  6. R. Orghici, U. Willer, M. Gierszewska, S. R. Waldvogel, W. Schade, "Fiber-optic evanescent field sensor for detection of explosives and CO2 dissolved in water," Appl. Phys. B: Lasers Opt. 90, 355-360 (2008).
  7. J. Ma, W. J. Bock, "Reshaping a sample fluid droplet: Toward combined performance enhancement of an evanescent-wave fiber-optic fluorometer," Opt. Lett. 32, 8-10 (2007).
  8. J. Ma, W. J. Bock, A. Cusano, "Insights into tunnelling rays: Outperforming guided rays in fiber-optic sensing device," Opt. Exp. 17, 7630-7639 (2009).

2012 (1)

J. Ma, A. Kos, W. J. Bock, X. Li, H. Nguyen, Z. Y. Wang, A. Cusano, "TNT vapor detection based on a Lab-on-a-fiber: Achieving a millimeter-scale sensing element on fiber," IEEE Sens. J. 12, 213-217 (2012).

2009 (2)

H. H. Nguyen, X. Z. Li, N. Wang, Z. Y. Wang, J. Ma, W. J. Bock, D. Ma, "Fiber-optic detection of explosives using readily available fluorescent polymers," Macromolecules 42, 921-926 (2009).

J. Ma, W. J. Bock, A. Cusano, "Insights into tunnelling rays: Outperforming guided rays in fiber-optic sensing device," Opt. Exp. 17, 7630-7639 (2009).

2008 (1)

R. Orghici, U. Willer, M. Gierszewska, S. R. Waldvogel, W. Schade, "Fiber-optic evanescent field sensor for detection of explosives and CO2 dissolved in water," Appl. Phys. B: Lasers Opt. 90, 355-360 (2008).

2007 (1)

1995 (1)

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, F. S. Ligler, "Detection of TNT in water using an evanescent wave fiber optic biosensor," Anal. Chem. 67, 2431-2435 (1995).

Anal. Chem. (1)

L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, F. S. Ligler, "Detection of TNT in water using an evanescent wave fiber optic biosensor," Anal. Chem. 67, 2431-2435 (1995).

Appl. Phys. B: Lasers Opt. (1)

R. Orghici, U. Willer, M. Gierszewska, S. R. Waldvogel, W. Schade, "Fiber-optic evanescent field sensor for detection of explosives and CO2 dissolved in water," Appl. Phys. B: Lasers Opt. 90, 355-360 (2008).

IEEE Sens. J. (1)

J. Ma, A. Kos, W. J. Bock, X. Li, H. Nguyen, Z. Y. Wang, A. Cusano, "TNT vapor detection based on a Lab-on-a-fiber: Achieving a millimeter-scale sensing element on fiber," IEEE Sens. J. 12, 213-217 (2012).

Macromolecules (1)

H. H. Nguyen, X. Z. Li, N. Wang, Z. Y. Wang, J. Ma, W. J. Bock, D. Ma, "Fiber-optic detection of explosives using readily available fluorescent polymers," Macromolecules 42, 921-926 (2009).

Opt. Exp. (1)

J. Ma, W. J. Bock, A. Cusano, "Insights into tunnelling rays: Outperforming guided rays in fiber-optic sensing device," Opt. Exp. 17, 7630-7639 (2009).

Opt. Lett. (1)

Other (2)

J. Ma, A. Kos, W. J. Bock, X. Li, H. Nguyen, Z. Y. Wang, A. Cusano, "Lab-on-a-fiber: Building a fiber-optic sensing platform for low-cost and high-performance trace vapor TNT detection," Proc. Int. Soc. Opt. Eng./ 4th Eur. Workshop Opt. Fiber Sens. (2010) pp. 76531E-1-76531E-4.

J. Ma, A. Kos, W. J. Bock, X. Li, H. Nguyen, Z. Y. Wang, A. Cusano, "Enabling low-cost, high-performance vapor-phase TNT detection by optimizing multimode fiber sensing platform," Proc. Int. Soc. Opt. Eng./ 21st Int. Conf. Opt. Fiber Sens. (2011) pp. 77535M-1-76535M-4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.