Abstract

Raman assistance in distributed sensors based on Brillouin optical time-domain analysis can significantly extend the measurement distance. In this paper, we have developed a 2 m resolution long-range Brillouin distributed sensor that reaches 100 km using first-order Raman assistance. The estimated uncertainty in temperature discrimination is 1.2 °C, even for the position of worst contrast. The parameters used in the experiment are supported by a simple analytical model of the required values, considering the main limitations of the setup.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. T. Horiguchi, M. Tateda, "Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave," Opt. Lett. 14, 408-410 (1989).
  2. T. Horiguchi, M. Tateda, "BOTDA—Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory," J. Lightw. Technol. 7, 1170-1176 (1989).
  3. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  4. M. Niklés, "Fibre optic distributed scattering sensing system: Perspectives and challenges for high performance applications," presented at the Third Eur. Workshop Opt. Fiber Sens. NapoliItaly (2007).
  5. M. N. Alahbadi, Y. T. Cho, T. P. Newson, "150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification," J. Opt. Soc. Amer. B 22, 1321-1324 (2005).
  6. F. Rodríguez-Barrios, S. Martín-López, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, M. González-Herráez, "Distributed Brillouin fiber sensor assisted by first-order Raman amplification," J. Lightw. Technol. 28, 2162-2172 (2010).
  7. S. Martín-López, M. Alcón-Camas, F. Rodríguez, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, M. González-Herráez, "Brillouin optical time-domain analysis assisted by second-order Raman amplification," Opt. Exp. 18, 18769-18778 (2010).
  8. M. A. Soto, G. Bolognini, F. Di Pasquale, "Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification," Opt. Exp. 19, 4444-4457 (2011).
  9. N. J. Doran, D. Wood, "Nonlinear-optical loop mirror," Opt. Lett. 13, 56-58 (1988).
  10. L. Thevenaz, S. F. Mafang, J. Lin, "Impact of pump depletion on the determination of the Brillouin gain frequency in distributed fiber sensors," presented at the 21st Int. Conf. Opt. Fiber Sensors OttawaCanada (2011).
  11. S. M. Foaleng-Mafang, F. Rodriguez-Barrios, S. Martin-Lopez, M. Gonzalez-Herraez, L. Thévenaz, "Detrimental effect of self-phase modulation on the performance of Brillouin distributed fiber sensors," Opt. Lett. 36, 97-99 (2011).
  12. C. R. S. Fludger, V. Handerek, R. J. Mears, "Pump to signal RIN transfer in Raman fiber amplifiers," J. Lightw. Technol. 19, 1140-1148 (2001).
  13. R. H. Stolen, E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1972).
  14. J. Bromage, "Raman amplification for fiber communications systems," J. Lightw. Technol. 22, 79-93 (2004).
  15. M. Niklés, L. Thévenaz, P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightw. Technol. 15, 1842-1851 (1997).
  16. J. Wu, Y. Li, C. Lou, Y. Gao, "Optimization of pulse compression with an unbalanced nonlinear optic mirror," Opt. Commun. 18, 43-47 (2000).

2011 (2)

M. A. Soto, G. Bolognini, F. Di Pasquale, "Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification," Opt. Exp. 19, 4444-4457 (2011).

S. M. Foaleng-Mafang, F. Rodriguez-Barrios, S. Martin-Lopez, M. Gonzalez-Herraez, L. Thévenaz, "Detrimental effect of self-phase modulation on the performance of Brillouin distributed fiber sensors," Opt. Lett. 36, 97-99 (2011).

2010 (2)

F. Rodríguez-Barrios, S. Martín-López, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, M. González-Herráez, "Distributed Brillouin fiber sensor assisted by first-order Raman amplification," J. Lightw. Technol. 28, 2162-2172 (2010).

S. Martín-López, M. Alcón-Camas, F. Rodríguez, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, M. González-Herráez, "Brillouin optical time-domain analysis assisted by second-order Raman amplification," Opt. Exp. 18, 18769-18778 (2010).

2005 (1)

M. N. Alahbadi, Y. T. Cho, T. P. Newson, "150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification," J. Opt. Soc. Amer. B 22, 1321-1324 (2005).

2004 (1)

J. Bromage, "Raman amplification for fiber communications systems," J. Lightw. Technol. 22, 79-93 (2004).

2001 (1)

C. R. S. Fludger, V. Handerek, R. J. Mears, "Pump to signal RIN transfer in Raman fiber amplifiers," J. Lightw. Technol. 19, 1140-1148 (2001).

2000 (1)

J. Wu, Y. Li, C. Lou, Y. Gao, "Optimization of pulse compression with an unbalanced nonlinear optic mirror," Opt. Commun. 18, 43-47 (2000).

1997 (1)

M. Niklés, L. Thévenaz, P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightw. Technol. 15, 1842-1851 (1997).

1989 (2)

T. Horiguchi, M. Tateda, "Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave," Opt. Lett. 14, 408-410 (1989).

T. Horiguchi, M. Tateda, "BOTDA—Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory," J. Lightw. Technol. 7, 1170-1176 (1989).

1988 (1)

1972 (1)

R. H. Stolen, E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1972).

Appl. Phys. Lett. (1)

R. H. Stolen, E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1972).

J. Lightw. Technol. (5)

J. Bromage, "Raman amplification for fiber communications systems," J. Lightw. Technol. 22, 79-93 (2004).

M. Niklés, L. Thévenaz, P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightw. Technol. 15, 1842-1851 (1997).

T. Horiguchi, M. Tateda, "BOTDA—Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory," J. Lightw. Technol. 7, 1170-1176 (1989).

F. Rodríguez-Barrios, S. Martín-López, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, M. González-Herráez, "Distributed Brillouin fiber sensor assisted by first-order Raman amplification," J. Lightw. Technol. 28, 2162-2172 (2010).

C. R. S. Fludger, V. Handerek, R. J. Mears, "Pump to signal RIN transfer in Raman fiber amplifiers," J. Lightw. Technol. 19, 1140-1148 (2001).

J. Opt. Soc. Amer. B (1)

M. N. Alahbadi, Y. T. Cho, T. P. Newson, "150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification," J. Opt. Soc. Amer. B 22, 1321-1324 (2005).

Opt. Commun. (1)

J. Wu, Y. Li, C. Lou, Y. Gao, "Optimization of pulse compression with an unbalanced nonlinear optic mirror," Opt. Commun. 18, 43-47 (2000).

Opt. Exp. (2)

S. Martín-López, M. Alcón-Camas, F. Rodríguez, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, M. González-Herráez, "Brillouin optical time-domain analysis assisted by second-order Raman amplification," Opt. Exp. 18, 18769-18778 (2010).

M. A. Soto, G. Bolognini, F. Di Pasquale, "Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification," Opt. Exp. 19, 4444-4457 (2011).

Opt. Lett. (3)

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

M. Niklés, "Fibre optic distributed scattering sensing system: Perspectives and challenges for high performance applications," presented at the Third Eur. Workshop Opt. Fiber Sens. NapoliItaly (2007).

L. Thevenaz, S. F. Mafang, J. Lin, "Impact of pump depletion on the determination of the Brillouin gain frequency in distributed fiber sensors," presented at the 21st Int. Conf. Opt. Fiber Sensors OttawaCanada (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.