Abstract

In this study, a phase-preserving limiter based on injection locking a semiconductor laser is fully investigated as an amplitude limiter for 10 Gb/s constant envelope phase encoded signals. A theoretical analysis on the modulation bandwidth and the modulation transfer function of the injection locked laser is carried out targeting to identify the operational characteristics and the regeneration properties of the proposed amplitude limiter. The theoretical analysis demonstrates the potential of the specific limiter to amplify 25 Gbaud phase modulated signals with simultaneous regeneration of its amplitude properties. Subsequently an experimental investigation demonstrates the performance of the proposed regenerator and addresses its potential exploitation in future optical networks. The specific limiter exhibits significant amplitude noise squeezing capability and extreme implementation simplicity.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription