Abstract

Dense wavelength-division multiplexing (DWDM) is a promising approach to design ultrahigh-capacity fiber-optic communication systems (>50 Tb/s). However, DWDM gives rise to severe physical impairments that adversely affect system performance. To mitigate various physical impairments in DWDM systems and exploit their system capacity, there is a need to develop a 2-D (time and wavelength) discrete-time input–output model of physical impairments that can become the foundation of signal processing for optical communications. This paper develops such a model based on the Volterra series transfer function (VSTF) method. We overcome the well-known triple integral problem associated with the VSTF method and reduce it to a simple integral. This model takes into account multiple channel effects, fiber losses, frequency chirp, optical filtering, and photodetection, which are ignored in the current literature. The model is in excellent agreement with results obtained by split-step Fourier simulation. Furthermore, with this model, we define coefficients that capture intersymbol interference, interchannel interference, self-phase modulation, intrachannel cross-phase modulation (XPM), intrachannel four-wave mixing (FWM), XPM, and FWM to characterize the impact of these effects individually on the system performance. We also apply this model to analyze the effects of varying system parameters and pulse shapes on the individual physical impairments.

© 2011 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription