Abstract

We describe a newly-developed method to measure inter-core crosstalk of single-mode multi-core fiber (MCF) statistically, and characteristics of the crosstalk of a previously fabricated MCF. To measure the crosstalk lower than -60 dB, we suppressed power floor of the measurement system by employing trench-assisted fiber as launching and receiving fibers. We measured statistical crosstalk distributions by utilizing wavelength dependence of the crosstalk, and the mean crosstalk between the neighboring cores was observed to be about -70 dB after 17.4-km propagation at 1625 nm. The measurement results were in good agreement with the previously proposed model. Based on the measurement results and the model, the crosstalk after 10000-km propagation was estimated to be less than -30 dB. We also confirmed that the crosstalk was varied stochastically depending on polarization state, and on mechanical shock and stress on the MCF.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B. Goebel, "Capacity limits of optical fiber networks," J. Lightw. Technol. 28, 662-701 (2010).
  2. T. Morioka, "New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond," Proc. 14th OptoElectron. Commun. Conf. (2009).
  3. M. Koshiba, K. Saitoh, Y. Kokubun, "Heterogeneous multi-core fibers: Proposal and design principle," IEICE Electron. Expr. 6, 98-103 (2009).
  4. K. Imamura, K. Mukasa, T. Yagi, "Investigation on multi-core fibers with large ${\rm A}_{\rm eff}$ and low micro bending loss," Proc. Opt. Fiber Commun. Conf. (2010).
  5. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, M. Koshiba, "An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction," IEICE Trans. Commun. E94-B, 409-416 (2011).
  6. J. M. Fini, B. Zhu, T. F. Taunay, M. F. Yan, "Statistics of crosstalk in bent multicore fibers," Opt. Exp. 18, 15122-15129 (2010).
  7. T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, E. Sasaoka, "Crosstalk variation of multi-core fibre due to fibre bend," Proc. Eur. Conf. Opt. Commun. (ECOC) (2010).
  8. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, "Low-crosstalk and low-loss multi-core fiber utilizing fiber bend," Proc. Opt. Fiber Commun. Conf. (2011).
  9. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, "Ultra-low-crosstalk multi-core fiber feasible to ultra-long-haul transmission," Proc. Opt. Fiber Commun. Conf. (2011).
  10. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, "Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber," Opt. Exp. 19, 16576-16592 (2011).
  11. G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists (Elsevier, 2005) pp. 527.

2011 (2)

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, M. Koshiba, "An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction," IEICE Trans. Commun. E94-B, 409-416 (2011).

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, "Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber," Opt. Exp. 19, 16576-16592 (2011).

2010 (2)

J. M. Fini, B. Zhu, T. F. Taunay, M. F. Yan, "Statistics of crosstalk in bent multicore fibers," Opt. Exp. 18, 15122-15129 (2010).

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B. Goebel, "Capacity limits of optical fiber networks," J. Lightw. Technol. 28, 662-701 (2010).

2009 (1)

M. Koshiba, K. Saitoh, Y. Kokubun, "Heterogeneous multi-core fibers: Proposal and design principle," IEICE Electron. Expr. 6, 98-103 (2009).

IEICE Electron. Expr. (1)

M. Koshiba, K. Saitoh, Y. Kokubun, "Heterogeneous multi-core fibers: Proposal and design principle," IEICE Electron. Expr. 6, 98-103 (2009).

IEICE Trans. Commun. (1)

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, M. Koshiba, "An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction," IEICE Trans. Commun. E94-B, 409-416 (2011).

J. Lightw. Technol. (1)

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B. Goebel, "Capacity limits of optical fiber networks," J. Lightw. Technol. 28, 662-701 (2010).

Opt. Exp. (2)

J. M. Fini, B. Zhu, T. F. Taunay, M. F. Yan, "Statistics of crosstalk in bent multicore fibers," Opt. Exp. 18, 15122-15129 (2010).

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, "Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber," Opt. Exp. 19, 16576-16592 (2011).

Other (6)

G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists (Elsevier, 2005) pp. 527.

T. Hayashi, T. Nagashima, O. Shimakawa, T. Sasaki, E. Sasaoka, "Crosstalk variation of multi-core fibre due to fibre bend," Proc. Eur. Conf. Opt. Commun. (ECOC) (2010).

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, "Low-crosstalk and low-loss multi-core fiber utilizing fiber bend," Proc. Opt. Fiber Commun. Conf. (2011).

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, E. Sasaoka, "Ultra-low-crosstalk multi-core fiber feasible to ultra-long-haul transmission," Proc. Opt. Fiber Commun. Conf. (2011).

T. Morioka, "New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond," Proc. 14th OptoElectron. Commun. Conf. (2009).

K. Imamura, K. Mukasa, T. Yagi, "Investigation on multi-core fibers with large ${\rm A}_{\rm eff}$ and low micro bending loss," Proc. Opt. Fiber Commun. Conf. (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.