Abstract

The dynamic properties of uniformly and chirpily stacked InAs–InGaAs–GaAs quantum dot lasers are analyzed in terms of relative intensity noise spectra. For uniformly stacked quantum dot laser with ground-state lasing emissions of 1.3 μm, the <i>K</i>-factor limited bandwidth is 13 GHz. The extracted differential gain and gain compression factor are 1.7 × 10<sup>-15</sup> cm<sup>2</sup> and 2 × 10<sup>-16</sup> cm<sup>3</sup>, respectively. For chirpily stacked quantum dot laser with excited-state lasing emissions of 1.2 μm, the <i>K</i>-factor limited bandwidth is 14 GHz. Yet the nonproportional dependence between resonance frequency and square root of incremental current yields differential gain of 4.3 × 10<sup>-15</sup> cm<sup>2</sup> and huge gain compression factor of 1.4 × 10<sup>-14</sup> cm<sup>3</sup>.

© 2011 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, "Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-$\mu$m p-doped quantum-dot lasers without current adjustments," Jpn. J. Appl. Phys. 43, L1124-L1126 (2004).
  2. S. Fathpour, Z. Mi, P. Bhattacharya, "High-speed quantum dot lasers," J. Phys. D 38, 2103-2111 (2005).
  3. B. J. Stevens, D. T. D. Childs, H. Shahid, R. A. Hogg, "Direct modulation of excited state quantum dot lasers," Appl. Phys. Lett. 95, 061101 (2009).
  4. K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, Y. Arakawa, "Wide temperature-range 10.3 Gbit/s operations of 1.3 $\mu$m high-density quantum-dot DFB lasers," Electron. Lett. 47, 206-208 (2011).
  5. M. Ishida, Y. Tanaka, K. Takada, T. Yamamoto, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, M. Sugawara, Y. Arakawa, "Effect of carrier transport on modulation bandwidth of 1.3-$\mu$m InAs–GaAs self-assembled quantum-dot lasers," Proc. 22th IEEE Int. Semicond. Laser Conf. (2010) pp. 174-175.
  6. P. Resneau, M. Calligaro, S. Bansropun, O. Parillaud, M. Krakowski, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, "High power, very low noise and long term ageing 1.55 $\mu$m InP-based Fabry-Perot quantum dash lasers under CW operation," Conf. Lasers Electro-Opt. (2005) pp. 1805-1807.
  7. M. Krakowski, P. Renseau, M. Calligaro, H. Liu, M. Hopkinson, "High power, very low noise, CW operation of 1.32 $\mu$m quantum-dot Fabry-Perot laser diodes," presented at the 20th IEEE Int. Semicond. Laser Conf. Kohala CoastHI Paper TuC4.
  8. A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, D. Bimberg, "Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs–GaAs quantum dot laser," Opt. Exp. 15, 5388-5393 (2007).
  9. A. Martinez, K. Merghem, S. Bouchoule, G. Moreau, A. Ramdane, J.-G. Provost, F. Alexandre, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, "Dynamic properties of InAs–InP (311)B quantum dot Fabry-Perot lasers emitting at 1.52 $\mu$m," Appl. Phys. Lett. 93, 021101 (2008).
  10. M. C. Tatham, I. F. Lealman, C. P. Seltzer, L. D. Westbrook, D. M. Cooper, "Resonance frequency, damping, and differential gain in 1.5 $\mu$m multiple quantum-well Lasers," IEEE J. Quantum Electron. 28, 408-414 (1992).
  11. N. Yokouchi, N. Yamanaka, N. Iwai, Y. Nakahira, A. Kasukawa, "Tensile-strained GaInAsP-InP quantum-well lasers emitting at 1.3$\mu$m," IEEE J. Quantum Electron. 32, 2148-2155 (1996).
  12. R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, J. E. Bowers, "High speed quantum-well lasers and carrier transport effects," IEEE J. Quantum Electron. 28, 1990-2008 (1992).
  13. T. Keating, X. Jin, S. L. Chuang, K. Hess, "Temperature dependence of electrical and optical modulation responses of quantum-well lasers," IEEE J. Quantum Electron. 35, 1526-1534 (1999).
  14. M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Shoji, H. Ebe, M. Sugawara, Y. Arakawa, "Photon lifetime dependence of modulation efficiency and K factor in 1.3 $\mu$m self-assembled InAs–GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth," Appl. Phys. Lett. 85, 4145-4147 (2004).
  15. H. Su, L. F. Lester, "Dynamic properties of quantum dot DFB lasers: High speed, linewidth and chirp," J. Phys. D 38, 2112-2118 (2005).
  16. M. Gioannini, A. Sevega, I. Montrosset, "Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers," Opt. Quantum. Electron. 38, 381-394 (2006).
  17. A. H. Al-Khursan, "Intensity noise characteristics in quantum-dot lasers: Four-level rate equations analysis," J. Lumin. 113, 129-136 (2005).
  18. A. Fiore, A. Markus, "Differential gain and gain compression in quantum-dot lasers," IEEE J. Quantum Electron. 43, 287-294 (2007).
  19. G. Lin, C. Y. Chang, W. C. Tseng, C. P. Lee, K. F. Lin, R. Xuan, J. Y. Chi, "Novel chirped multilayer quantum-dot lasers," Proc. SPIE (2008) pp. 69970R.
  20. H. Lu, C. Blaauw, B. Benyon, G. P. Li, T. Makino, "High-power and high-speed performance of 1.3-$\mu$m strained MQW gain-coupled DFB lasers," IEEE J. Sel. Topics Quantum Electron. 1, 375-380 (1995).
  21. T. Fukushima, R. Nagarajan, M. Ishikawa, J. E. Bowers, "High-speed dynamics in InP based multiple quantum well lasers," Jpn. J. Appl. Phys. 32, 70-83 (1993).
  22. J. E. Bowers, M. A. Pollack, Optical Fiber Telecommnications II (Academic, 1988) pp. 509-568.
  23. D. Klotzkin, P. Bhattacharya, "Temperature dependence of dynamic and DC characteristics of quantum-well and quantum-dot lasers: A comparative study," J. Lightw. Technol. 17, 1634-1641 (1999).
  24. P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, Z. K. Wu, J. Urayama, K. Kim, T. B. Norris, "Carrier dynamics and high-speed modulation properties of tunnel junction InGaAs-GaAs quantum-dot lasers," IEEE J. Quantum Electron. 39, 952-962 (2003).
  25. M. Sugawara, K. Mukai, H. Shoji, "Effect of phonon bottleneck on quantum-dot laser performance," Appl. Phys. Lett. 71, 2791-2793 (1997).
  26. F. Grillot, B. Dagens, J. G. Provost, H. Su, L. F. Lester, "Gain compression and above-threshold linewidth enhancement factor in 1.3-$\mu$m InAs-GaAs quantum-dot lasers," IEEE J. Quantum Electron. 44, 946-951 (2008).

2011 (1)

K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, Y. Arakawa, "Wide temperature-range 10.3 Gbit/s operations of 1.3 $\mu$m high-density quantum-dot DFB lasers," Electron. Lett. 47, 206-208 (2011).

2009 (1)

B. J. Stevens, D. T. D. Childs, H. Shahid, R. A. Hogg, "Direct modulation of excited state quantum dot lasers," Appl. Phys. Lett. 95, 061101 (2009).

2008 (2)

A. Martinez, K. Merghem, S. Bouchoule, G. Moreau, A. Ramdane, J.-G. Provost, F. Alexandre, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, "Dynamic properties of InAs–InP (311)B quantum dot Fabry-Perot lasers emitting at 1.52 $\mu$m," Appl. Phys. Lett. 93, 021101 (2008).

F. Grillot, B. Dagens, J. G. Provost, H. Su, L. F. Lester, "Gain compression and above-threshold linewidth enhancement factor in 1.3-$\mu$m InAs-GaAs quantum-dot lasers," IEEE J. Quantum Electron. 44, 946-951 (2008).

2007 (2)

A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, D. Bimberg, "Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs–GaAs quantum dot laser," Opt. Exp. 15, 5388-5393 (2007).

A. Fiore, A. Markus, "Differential gain and gain compression in quantum-dot lasers," IEEE J. Quantum Electron. 43, 287-294 (2007).

2006 (1)

M. Gioannini, A. Sevega, I. Montrosset, "Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers," Opt. Quantum. Electron. 38, 381-394 (2006).

2005 (3)

A. H. Al-Khursan, "Intensity noise characteristics in quantum-dot lasers: Four-level rate equations analysis," J. Lumin. 113, 129-136 (2005).

H. Su, L. F. Lester, "Dynamic properties of quantum dot DFB lasers: High speed, linewidth and chirp," J. Phys. D 38, 2112-2118 (2005).

S. Fathpour, Z. Mi, P. Bhattacharya, "High-speed quantum dot lasers," J. Phys. D 38, 2103-2111 (2005).

2004 (2)

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, "Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-$\mu$m p-doped quantum-dot lasers without current adjustments," Jpn. J. Appl. Phys. 43, L1124-L1126 (2004).

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Shoji, H. Ebe, M. Sugawara, Y. Arakawa, "Photon lifetime dependence of modulation efficiency and K factor in 1.3 $\mu$m self-assembled InAs–GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth," Appl. Phys. Lett. 85, 4145-4147 (2004).

2003 (1)

P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, Z. K. Wu, J. Urayama, K. Kim, T. B. Norris, "Carrier dynamics and high-speed modulation properties of tunnel junction InGaAs-GaAs quantum-dot lasers," IEEE J. Quantum Electron. 39, 952-962 (2003).

1999 (2)

D. Klotzkin, P. Bhattacharya, "Temperature dependence of dynamic and DC characteristics of quantum-well and quantum-dot lasers: A comparative study," J. Lightw. Technol. 17, 1634-1641 (1999).

T. Keating, X. Jin, S. L. Chuang, K. Hess, "Temperature dependence of electrical and optical modulation responses of quantum-well lasers," IEEE J. Quantum Electron. 35, 1526-1534 (1999).

1997 (1)

M. Sugawara, K. Mukai, H. Shoji, "Effect of phonon bottleneck on quantum-dot laser performance," Appl. Phys. Lett. 71, 2791-2793 (1997).

1996 (1)

N. Yokouchi, N. Yamanaka, N. Iwai, Y. Nakahira, A. Kasukawa, "Tensile-strained GaInAsP-InP quantum-well lasers emitting at 1.3$\mu$m," IEEE J. Quantum Electron. 32, 2148-2155 (1996).

1995 (1)

H. Lu, C. Blaauw, B. Benyon, G. P. Li, T. Makino, "High-power and high-speed performance of 1.3-$\mu$m strained MQW gain-coupled DFB lasers," IEEE J. Sel. Topics Quantum Electron. 1, 375-380 (1995).

1993 (1)

T. Fukushima, R. Nagarajan, M. Ishikawa, J. E. Bowers, "High-speed dynamics in InP based multiple quantum well lasers," Jpn. J. Appl. Phys. 32, 70-83 (1993).

1992 (2)

R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, J. E. Bowers, "High speed quantum-well lasers and carrier transport effects," IEEE J. Quantum Electron. 28, 1990-2008 (1992).

M. C. Tatham, I. F. Lealman, C. P. Seltzer, L. D. Westbrook, D. M. Cooper, "Resonance frequency, damping, and differential gain in 1.5 $\mu$m multiple quantum-well Lasers," IEEE J. Quantum Electron. 28, 408-414 (1992).

Appl. Phys. Lett. (4)

B. J. Stevens, D. T. D. Childs, H. Shahid, R. A. Hogg, "Direct modulation of excited state quantum dot lasers," Appl. Phys. Lett. 95, 061101 (2009).

A. Martinez, K. Merghem, S. Bouchoule, G. Moreau, A. Ramdane, J.-G. Provost, F. Alexandre, F. Grillot, O. Dehaese, R. Piron, S. Loualiche, "Dynamic properties of InAs–InP (311)B quantum dot Fabry-Perot lasers emitting at 1.52 $\mu$m," Appl. Phys. Lett. 93, 021101 (2008).

M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Shoji, H. Ebe, M. Sugawara, Y. Arakawa, "Photon lifetime dependence of modulation efficiency and K factor in 1.3 $\mu$m self-assembled InAs–GaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth," Appl. Phys. Lett. 85, 4145-4147 (2004).

M. Sugawara, K. Mukai, H. Shoji, "Effect of phonon bottleneck on quantum-dot laser performance," Appl. Phys. Lett. 71, 2791-2793 (1997).

Electron. Lett. (1)

K. Takada, Y. Tanaka, T. Matsumoto, M. Ekawa, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, T. Yamamoto, M. Sugawara, Y. Arakawa, "Wide temperature-range 10.3 Gbit/s operations of 1.3 $\mu$m high-density quantum-dot DFB lasers," Electron. Lett. 47, 206-208 (2011).

IEEE J. Quantum Electron. (7)

M. C. Tatham, I. F. Lealman, C. P. Seltzer, L. D. Westbrook, D. M. Cooper, "Resonance frequency, damping, and differential gain in 1.5 $\mu$m multiple quantum-well Lasers," IEEE J. Quantum Electron. 28, 408-414 (1992).

N. Yokouchi, N. Yamanaka, N. Iwai, Y. Nakahira, A. Kasukawa, "Tensile-strained GaInAsP-InP quantum-well lasers emitting at 1.3$\mu$m," IEEE J. Quantum Electron. 32, 2148-2155 (1996).

R. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, J. E. Bowers, "High speed quantum-well lasers and carrier transport effects," IEEE J. Quantum Electron. 28, 1990-2008 (1992).

T. Keating, X. Jin, S. L. Chuang, K. Hess, "Temperature dependence of electrical and optical modulation responses of quantum-well lasers," IEEE J. Quantum Electron. 35, 1526-1534 (1999).

A. Fiore, A. Markus, "Differential gain and gain compression in quantum-dot lasers," IEEE J. Quantum Electron. 43, 287-294 (2007).

F. Grillot, B. Dagens, J. G. Provost, H. Su, L. F. Lester, "Gain compression and above-threshold linewidth enhancement factor in 1.3-$\mu$m InAs-GaAs quantum-dot lasers," IEEE J. Quantum Electron. 44, 946-951 (2008).

P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, Z. K. Wu, J. Urayama, K. Kim, T. B. Norris, "Carrier dynamics and high-speed modulation properties of tunnel junction InGaAs-GaAs quantum-dot lasers," IEEE J. Quantum Electron. 39, 952-962 (2003).

IEEE J. Sel. Topics Quantum Electron. (1)

H. Lu, C. Blaauw, B. Benyon, G. P. Li, T. Makino, "High-power and high-speed performance of 1.3-$\mu$m strained MQW gain-coupled DFB lasers," IEEE J. Sel. Topics Quantum Electron. 1, 375-380 (1995).

J. Lightw. Technol. (1)

D. Klotzkin, P. Bhattacharya, "Temperature dependence of dynamic and DC characteristics of quantum-well and quantum-dot lasers: A comparative study," J. Lightw. Technol. 17, 1634-1641 (1999).

J. Lumin. (1)

A. H. Al-Khursan, "Intensity noise characteristics in quantum-dot lasers: Four-level rate equations analysis," J. Lumin. 113, 129-136 (2005).

J. Phys. D (2)

H. Su, L. F. Lester, "Dynamic properties of quantum dot DFB lasers: High speed, linewidth and chirp," J. Phys. D 38, 2112-2118 (2005).

S. Fathpour, Z. Mi, P. Bhattacharya, "High-speed quantum dot lasers," J. Phys. D 38, 2103-2111 (2005).

Jpn. J. Appl. Phys. (2)

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, "Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-$\mu$m p-doped quantum-dot lasers without current adjustments," Jpn. J. Appl. Phys. 43, L1124-L1126 (2004).

T. Fukushima, R. Nagarajan, M. Ishikawa, J. E. Bowers, "High-speed dynamics in InP based multiple quantum well lasers," Jpn. J. Appl. Phys. 32, 70-83 (1993).

Opt. Exp. (1)

A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin, D. Bimberg, "Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs–GaAs quantum dot laser," Opt. Exp. 15, 5388-5393 (2007).

Opt. Quantum. Electron. (1)

M. Gioannini, A. Sevega, I. Montrosset, "Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers," Opt. Quantum. Electron. 38, 381-394 (2006).

Other (5)

G. Lin, C. Y. Chang, W. C. Tseng, C. P. Lee, K. F. Lin, R. Xuan, J. Y. Chi, "Novel chirped multilayer quantum-dot lasers," Proc. SPIE (2008) pp. 69970R.

M. Ishida, Y. Tanaka, K. Takada, T. Yamamoto, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, M. Sugawara, Y. Arakawa, "Effect of carrier transport on modulation bandwidth of 1.3-$\mu$m InAs–GaAs self-assembled quantum-dot lasers," Proc. 22th IEEE Int. Semicond. Laser Conf. (2010) pp. 174-175.

P. Resneau, M. Calligaro, S. Bansropun, O. Parillaud, M. Krakowski, R. Schwertberger, A. Somers, J. P. Reithmaier, A. Forchel, "High power, very low noise and long term ageing 1.55 $\mu$m InP-based Fabry-Perot quantum dash lasers under CW operation," Conf. Lasers Electro-Opt. (2005) pp. 1805-1807.

M. Krakowski, P. Renseau, M. Calligaro, H. Liu, M. Hopkinson, "High power, very low noise, CW operation of 1.32 $\mu$m quantum-dot Fabry-Perot laser diodes," presented at the 20th IEEE Int. Semicond. Laser Conf. Kohala CoastHI Paper TuC4.

J. E. Bowers, M. A. Pollack, Optical Fiber Telecommnications II (Academic, 1988) pp. 509-568.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.