Abstract

The Nyquist wavelength-division multiplexing technique enable a solution to achieve high spectral efficiency in long-haul transmission system. Compare to polarization division multiplexing quadrature-phase-shift-keying, even high-level modulation scheme such as polarization division multiplexing 16-quadrature-amplitude-modulation is much more sensitive to intra-channel noise and inter-channel linear crosstalk caused by Nyquist wavelength-division multiplexing. We experimentally demonstrated the generation and transmission of the 6 × 128-Gb/s Nyquist wavelength-division multiplexing sixteen quadrature amplitude modulation signal over 1200-km single-mode fiber (SMF)-28 with Erbium-doped fiber amplifier only amplification with a net SE of 7.47 b/s/Hz, which is so far, to our knowledge, the highest SE for the signal with the bit rate above 100-Gb/s using the polarization-division multiplexing 16-quadrature-amplitude-modulation format. This experiment was successfully enabled by digital-signal-processing (DSP) pre-equalization of transmitter-side impairments and DSP post-equalization of the channel and receiver-side impairments. Nyquist-band is considered in the pre- equalization to enhance the tolerance of the polarization-division multiplexing 16-quadrature-amplitude-modulation to the aggressive spectral shaping. The bit error rate for each of the 6 channels is smaller than the limitation of the forward-error-correction limit of 3.8 × 10<sup>-3</sup> after 1200-km SMF-28 transmission.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription