Abstract

This paper focuses on terabit superchannel transmission with enhanced network reach by using an emerging noise-suppressed Nyquist wavelength division multiplexing (NS-N-WDM) technique for polarization multiplexing quadrature phase shift keying subchannels at different symbol rate to subchannel spacing ratios up to 1.28, and for the first time, it was compared experimentally with the transmission capability of no-guard-interval coherent optical orthogonal frequency division multiplexing (NGI-CO-OFDM) on the same testbed. At 2 × 10<sup>-3</sup> bit error ratio, the maximum reachable distance is 3200 and 2800 km SMF-28 with erbium-doped-fiber-amplifier-only amplification for NGI-CO-OFDM and NS-N-WDM terabit superchannels, respectively, at 100 Gb/s/ch. For 11 × 112 and 11 × 128 Gb/s/ch NS-N-WDM transmission under assumption of different coding gain with hard-decision and soft-decision forward error correction, their maximum achievable distance was found to be equivalent, which are 2100 and 2170 km, respectively, both were achieved by using digital noise filtering and 1-bit maximum likelihood sequence estimation at the receiver DSP. In addition, the back-to-back characteristics of NS-N-WDM superchannel such as analog-to-digital converter bandwidth requirement and its tolerance to unequal subchannel power were experimentally evaluated and studied.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription