Abstract

This paper is devoted to an in-depth discussion of the Gaussian Noise (GN) model which describes non-linear propagation in uncompensated coherent transmission systems. Similar models and validation efforts are reviewed. Then, the main equations of the GN model are introduced. An intuitive physical interpretation of the equations and their features is proposed. The main characteristics of the non-linear interference (NLI) noise spectra that the GN model produces are discussed. To ease model exploitation, a new formulation in hyperbolic coordinates is proposed, which makes numerical integration faster. New approximate closed-form solutions are also provided. An extension of the GN model to distributed-amplification scenarios is introduced. NLI noise accumulation versus distance and bandwidth are studied in depth. Finally, the GN model implications as to system and networks design and optimization are discussed.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription