Abstract

As 100-Gb/s coherent systems based on polarization- division multiplexed quadrature phase shift keying (PDM-QPSK), with aggregate wavelength-division multiplexed (WDM) capacities close to 10 Tb/s, are getting widely deployed, the use of high-spectral-efficiency quadrature amplitude modulation (QAM) to increase both per-channel interface rates and aggregate WDM capacities is the next evolutionary step. In this paper we review high-spectral-efficiency optical modulation formats for use in digital coherent systems. We look at fundamental as well as at technological scaling trends and highlight important trade-offs pertaining to the design and performance of coherent higher-order QAM transponders.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription