Abstract

A black box model (BBM) of common environment is introduced to characterize the gain of erbium-doped fiber amplifier (EDFA) for any wavelength in the range of 1540–1560 nm in the radiation environment. Two erbium-doped fibers with different concentrations have been radiated to confirm the validity of the BBM. Using the method of BBM, the less measured parameters can overcome the restriction of the measured time in radiation environment. Therefore, that affords a new way to characterize the gain deterioration characteristic of EDFA in multiwavelength in radiation environment.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, R. G. Hay, "The space technology research vehicle (STRV) ${-}2$ Program," Proc. SPIE 4136, 36-47 (2000).
  2. A. Biswas, M. W. Wright, J. Kovalik, S. Piazzolla, "Uplink beacon laser for Mars laser communication demonstration (MLCD)," Proc. SPIE (2005) pp. 93-100.
  3. B. Laurent, O. Duchmann, "The Silex Project: The first European optical intersatellite link experiment," Proc. SPIE (1991) pp. 2-12.
  4. M. Reyes, Z. Sodnik, P. Lopez, A. Alonso, T. Viera, G. Oppenhauser, "Preliminary results of the in-orbit test of ARTEMIS with the optical ground station," Proc. SPIE (2002) pp. 38-49.
  5. M. Jeganathan, M. Toyoshimaa, K. Wilson, J. Jamesb, G. Xuc, J. Lesh, "Data analysis results from the GOLD experiments," Proc. SPIE (1997) pp. 70-81.
  6. T. T. Nielsen, G. Oppenhaeuser, B. Laurent, G. Planche, "In-orbit test results of the optical intersatellite link, SILEX. A milestone in satellite communication," Proc. 53rd Int. Astron. Congr. (2002) pp. 1-11.
  7. T. Jono, Y. Takayama, N. Kura, K. Ohinata, Y. Koyama, K. Shiratama, Z. Sodnik, B. Demelenne, A. Bird, K. Arai, "OICETS on-orbit laser communication experiments," Proc. SPIE (2006) pp. 13-23.
  8. M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. Reyes, A. Alonso, Z. Sodnik, B. Demelenne, "Ground-to-satellite optical link tests between Japanese laser communications terminal and European geostationary satellite ARTEMIS," Proc. SPIE (2004) pp. 1-15.
  9. M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, K. Shiratama, "Ground-to-OICETS laser communication experiments," Proc. SPIE (2006) pp. 1-8.
  10. J. Ma, M. Li, L. Y. Tan, Y. P. Zhou, S. Y. Yu, Q. W. Ran, "Experimental investigation of radiation effect on erbium-ytterbium co-doped fiber amplifier for space optical communication in low-dose radiation environment," Opt. Exp. 17, 15571-15577 (2009).
  11. V. M. N. Passaro, M. N. Armenise, "Neutron and gamma radiation effects in proton exchanged optical waveguides," Opt. Exp. 10, 960-964 (2002).
  12. D. M. Boroson, A. Biswas, B. L. Edwards, "MLCD: Overview of NASA's mars laser communications demonstration system," Proc. SPIE (2004) pp. 16-28.
  13. H. Hemmati, A. Biswas, D. M. Boroson, "30-dB data rate improvement for interplanetary laser communication," Proc. SPIE (2008) pp. 687707-1-687707-8.
  14. O. Berne, M. Caussanel, O. Gilard, "A model for the prediction of EDFA gain in a space radiation environment," IEEE Photon. Technol. Lett. 16, 2227-2229 (2004).
  15. D. L. Griscom, M. E. Gingerich, E. J. Friebele, "Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose," Phys. Rev. Lett. 71, 1019-1022 (1993).
  16. K. Miller, T. O. Connor, R. Kaliski, "Gamma-ray induced effects in erbium-doped fiber optic amplifiers," Proc. SPIE (1998) pp. 16-23.
  17. T. S. Rose, D. Gunn, G. C. Valley, "Gamma and proton radiation effects in erbium-doped fiber amplifiers: Active and passive measurements," J. Lightw. Technol. 19, 1918-1923 (2001).
  18. A. Gusarov, M. Van Uffelen, M. Hotoleanu, H. Thienpont, F. Berghmans, "Radiation sensitivity of EDFAs based on highly Er-doped fibers," J. Lightw. Technol. 27, 1540-1545 (2009).
  19. S. Girard, M. Vivona, A. Laurent, B. Cadier, C. Marcandella, T. Robin, E. Pinsard, A. Boukenter, Y. Ouerdane, "Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application," Opt. Exp. 20, 8457-8465 (2012).
  20. J. Thomas, M. Myara, L. Troussellier, E. Burov, A. Pastouret, D. Boivin, G. Mélin, O. Gilard, M. Sotom, P. Signoret, "Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications," Opt. Exp. 20, 2435-2444 (2012).
  21. C. R. Giles, E. Desurvire, "Modeling of erbium-doped fiber amplifiers," J. Lightw. Technol. 9, 271-283 (1991).
  22. R. H. West, A. P. Lenham, "Characteristics of light induced annealing in irradiated optical fibres," Electron. Lett. 18, 483-484 (1982).
  23. X. P. Zhang, A. Mitchell, "A simple black box model for erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 12, 28-30 (2000).
  24. D. Bonnedal, "EDFA gain described with a black box model," Proc. IEEE/LEOS Opt. Amplifier Appl. (1996) pp. 215-216.
  25. J. Burgmeier, A. Cords, R. Marz, C. Schaffer, B. Stummer, "A black box model of EDFA's operating in WDM systems," J. Lightw. Technol. 16, 1271-1275 (1998).

2012 (2)

S. Girard, M. Vivona, A. Laurent, B. Cadier, C. Marcandella, T. Robin, E. Pinsard, A. Boukenter, Y. Ouerdane, "Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application," Opt. Exp. 20, 8457-8465 (2012).

J. Thomas, M. Myara, L. Troussellier, E. Burov, A. Pastouret, D. Boivin, G. Mélin, O. Gilard, M. Sotom, P. Signoret, "Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications," Opt. Exp. 20, 2435-2444 (2012).

2009 (2)

J. Ma, M. Li, L. Y. Tan, Y. P. Zhou, S. Y. Yu, Q. W. Ran, "Experimental investigation of radiation effect on erbium-ytterbium co-doped fiber amplifier for space optical communication in low-dose radiation environment," Opt. Exp. 17, 15571-15577 (2009).

A. Gusarov, M. Van Uffelen, M. Hotoleanu, H. Thienpont, F. Berghmans, "Radiation sensitivity of EDFAs based on highly Er-doped fibers," J. Lightw. Technol. 27, 1540-1545 (2009).

2004 (1)

O. Berne, M. Caussanel, O. Gilard, "A model for the prediction of EDFA gain in a space radiation environment," IEEE Photon. Technol. Lett. 16, 2227-2229 (2004).

2002 (1)

V. M. N. Passaro, M. N. Armenise, "Neutron and gamma radiation effects in proton exchanged optical waveguides," Opt. Exp. 10, 960-964 (2002).

2001 (1)

T. S. Rose, D. Gunn, G. C. Valley, "Gamma and proton radiation effects in erbium-doped fiber amplifiers: Active and passive measurements," J. Lightw. Technol. 19, 1918-1923 (2001).

2000 (2)

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, R. G. Hay, "The space technology research vehicle (STRV) ${-}2$ Program," Proc. SPIE 4136, 36-47 (2000).

X. P. Zhang, A. Mitchell, "A simple black box model for erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 12, 28-30 (2000).

1998 (1)

J. Burgmeier, A. Cords, R. Marz, C. Schaffer, B. Stummer, "A black box model of EDFA's operating in WDM systems," J. Lightw. Technol. 16, 1271-1275 (1998).

1993 (1)

D. L. Griscom, M. E. Gingerich, E. J. Friebele, "Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose," Phys. Rev. Lett. 71, 1019-1022 (1993).

1991 (1)

C. R. Giles, E. Desurvire, "Modeling of erbium-doped fiber amplifiers," J. Lightw. Technol. 9, 271-283 (1991).

1982 (1)

R. H. West, A. P. Lenham, "Characteristics of light induced annealing in irradiated optical fibres," Electron. Lett. 18, 483-484 (1982).

Electron. Lett. (1)

R. H. West, A. P. Lenham, "Characteristics of light induced annealing in irradiated optical fibres," Electron. Lett. 18, 483-484 (1982).

IEEE Photon. Technol. Lett. (1)

O. Berne, M. Caussanel, O. Gilard, "A model for the prediction of EDFA gain in a space radiation environment," IEEE Photon. Technol. Lett. 16, 2227-2229 (2004).

IEEE Photon. Technol. Lett. (1)

X. P. Zhang, A. Mitchell, "A simple black box model for erbium-doped fiber amplifiers," IEEE Photon. Technol. Lett. 12, 28-30 (2000).

J. Lightw. Technol. (1)

T. S. Rose, D. Gunn, G. C. Valley, "Gamma and proton radiation effects in erbium-doped fiber amplifiers: Active and passive measurements," J. Lightw. Technol. 19, 1918-1923 (2001).

J. Lightw. Technol. (1)

A. Gusarov, M. Van Uffelen, M. Hotoleanu, H. Thienpont, F. Berghmans, "Radiation sensitivity of EDFAs based on highly Er-doped fibers," J. Lightw. Technol. 27, 1540-1545 (2009).

J. Lightw. Technol. (2)

C. R. Giles, E. Desurvire, "Modeling of erbium-doped fiber amplifiers," J. Lightw. Technol. 9, 271-283 (1991).

J. Burgmeier, A. Cords, R. Marz, C. Schaffer, B. Stummer, "A black box model of EDFA's operating in WDM systems," J. Lightw. Technol. 16, 1271-1275 (1998).

Opt. Exp. (1)

V. M. N. Passaro, M. N. Armenise, "Neutron and gamma radiation effects in proton exchanged optical waveguides," Opt. Exp. 10, 960-964 (2002).

Opt. Exp. (3)

S. Girard, M. Vivona, A. Laurent, B. Cadier, C. Marcandella, T. Robin, E. Pinsard, A. Boukenter, Y. Ouerdane, "Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application," Opt. Exp. 20, 8457-8465 (2012).

J. Thomas, M. Myara, L. Troussellier, E. Burov, A. Pastouret, D. Boivin, G. Mélin, O. Gilard, M. Sotom, P. Signoret, "Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications," Opt. Exp. 20, 2435-2444 (2012).

J. Ma, M. Li, L. Y. Tan, Y. P. Zhou, S. Y. Yu, Q. W. Ran, "Experimental investigation of radiation effect on erbium-ytterbium co-doped fiber amplifier for space optical communication in low-dose radiation environment," Opt. Exp. 17, 15571-15577 (2009).

Phys. Rev. Lett. (1)

D. L. Griscom, M. E. Gingerich, E. J. Friebele, "Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose," Phys. Rev. Lett. 71, 1019-1022 (1993).

Proc. SPIE (1)

J. Shoemaker, P. Brooks, E. Korevaar, G. Arnold, A. Das, J. Stubstad, R. G. Hay, "The space technology research vehicle (STRV) ${-}2$ Program," Proc. SPIE 4136, 36-47 (2000).

Other (12)

A. Biswas, M. W. Wright, J. Kovalik, S. Piazzolla, "Uplink beacon laser for Mars laser communication demonstration (MLCD)," Proc. SPIE (2005) pp. 93-100.

B. Laurent, O. Duchmann, "The Silex Project: The first European optical intersatellite link experiment," Proc. SPIE (1991) pp. 2-12.

M. Reyes, Z. Sodnik, P. Lopez, A. Alonso, T. Viera, G. Oppenhauser, "Preliminary results of the in-orbit test of ARTEMIS with the optical ground station," Proc. SPIE (2002) pp. 38-49.

M. Jeganathan, M. Toyoshimaa, K. Wilson, J. Jamesb, G. Xuc, J. Lesh, "Data analysis results from the GOLD experiments," Proc. SPIE (1997) pp. 70-81.

T. T. Nielsen, G. Oppenhaeuser, B. Laurent, G. Planche, "In-orbit test results of the optical intersatellite link, SILEX. A milestone in satellite communication," Proc. 53rd Int. Astron. Congr. (2002) pp. 1-11.

T. Jono, Y. Takayama, N. Kura, K. Ohinata, Y. Koyama, K. Shiratama, Z. Sodnik, B. Demelenne, A. Bird, K. Arai, "OICETS on-orbit laser communication experiments," Proc. SPIE (2006) pp. 13-23.

M. Toyoshima, S. Yamakawa, T. Yamawaki, K. Arai, M. Reyes, A. Alonso, Z. Sodnik, B. Demelenne, "Ground-to-satellite optical link tests between Japanese laser communications terminal and European geostationary satellite ARTEMIS," Proc. SPIE (2004) pp. 1-15.

M. Toyoshima, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kunimori, T. Jono, Y. Takayama, N. Kura, K. Ohinata, K. Arai, K. Shiratama, "Ground-to-OICETS laser communication experiments," Proc. SPIE (2006) pp. 1-8.

K. Miller, T. O. Connor, R. Kaliski, "Gamma-ray induced effects in erbium-doped fiber optic amplifiers," Proc. SPIE (1998) pp. 16-23.

D. M. Boroson, A. Biswas, B. L. Edwards, "MLCD: Overview of NASA's mars laser communications demonstration system," Proc. SPIE (2004) pp. 16-28.

H. Hemmati, A. Biswas, D. M. Boroson, "30-dB data rate improvement for interplanetary laser communication," Proc. SPIE (2008) pp. 687707-1-687707-8.

D. Bonnedal, "EDFA gain described with a black box model," Proc. IEEE/LEOS Opt. Amplifier Appl. (1996) pp. 215-216.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.