Abstract

High-frequency electro-optical modulator is critical for enabling signal processing and distribution in the next generation cloud-computing, tele-medicine, and telecommunications. In this paper, substrate integrated waveguide (SIW) is exploited as an alternative fundamental transmission line structure in support of electrical signal for the design and development of millimeter-wave and terahertz (THz) traveling-wave polymeric electro-optic (EO) modulator. Optical and full-wave electromagnetic analyses are carried out and structure optimization is made on the basis of such analyses in order to obtain millimeter-wave transmission characteristics and optical response. Compared to its conventional TEM-mode transmission lines, this bandpass non-TEM mode SIW-based EO modulator presents numerous advantages, namely compact structure, low transmission loss, low driving power, simple packaging and flat optical response over a wide frequency range.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription