Abstract

Power scaling of fiber laser systems requires the development of innovative active fibers, capable of providing high pump absorption, ultralarge effective area, high-order mode suppression, and resilience to thermal effects. Thermally induced refractive index change has been recently appointed as one major limitation to the achievable power, causing degradation of the modal properties and preventing to obtain stable diffraction-limited output beam. In this paper, the effects of thermally induced refractive index change on the guiding properties of a double-cladding distributed modal filtering rod-type photonic crystal fiber, which exploits resonant coupling with high-index elements to suppress high-order modes, are thoroughly investigated. A computationally efficient model has been developed to calculate the refractive index change due to the thermo-optical effect, and it has been integrated into a full-vector modal solver based on the finite-element method to obtain the guided modes, considering different heating conditions. Results have shown that the single-mode regime of the distributed modal filtering fiber is less sensitive to thermal effects with respect to index-guiding fibers with the same effective area. In fact, as the pump power is increased, their single-mode regime is preserved, being only blue-shifted in wavelength.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. A. Tünnermann, T. Schreiber, J. Limpert, "Fiber lasers and amplifiers: An ultrafast performance evolution," Appl. Opt. 49, F71-F78 (2010).
  2. D. J. Richardson, J. Nilsson, W. A. Clarkson, "High power fiber lasers: Current status and future perspectives," J. Opt. Soc. Amer. B 27, B63-B92 (2010).
  3. J. Nilsson, D. N. Payne, "High-power fiber lasers," Science 332, 921-922 (2011).
  4. K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sørensen, M. Denninger, C. Jakobsen, H. R. Simonsen, "Airclad fiber laser technology," Proc. SPIE 6873, 687307-1-687307-12 (2008).
  5. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, "High-power rod-type photonic crystal fiber laser," Opt. Exp. 13, 1055-1058 (2005).
  6. L. Michaille, C. R. Bennett, D. M. Taylor, T. J. Sheperd, "Multicore photonic crystal fiber lasers for high power/energy applications," IEEE J. Sel. Topics Quantum Electron. 15, 328-336 (2009).
  7. T. T. Alkeskjold, "Large-mode-area ytterbium-doped fiber amplifier with distributed narrow spectral filtering and reduced bend sensitivity," Opt. Exp. 17, 16394-16405 (2009).
  8. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, A. Tünnermann, "High average power large-pitch fiber amplifier with robust single-mode operation," Opt. Lett. 36, 689-691 (2011).
  9. T. T. Alkeskjold, M. Laurila, L. Scolari, J. Broeng, "Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier," Opt. Exp. 19, 7398-7409 (2011).
  10. A. V. Smith, J. J. Smith, "Mode instability in high power fiber amplifiers," Opt. Exp. 19, 10180-10192 (2011).
  11. F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, A. Tünnermann, "Thermally induced waveguide changes in active fibers," Opt. Exp. 20, 3997-4008 (2012).
  12. F. Poli, A. Cucinotta, S. Selleri, Photonic Crystal Fibers. Properties and Applications (Springer, 2007).
  13. A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, M. Zoboli, "Amplification properties of Er3+-doped photonic crystal fibers," J. Lightw. Technol. 21, 782-788 (2003).
  14. A. Cucinotta, F. Poli, S. Selleri, "Design of erbium-doped triangular photonic-crystal-fiber-based amplifiers," IEEE Photon. Technol. Lett. 16, 2027-2029 (2004).
  15. M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, T. T. Alkeskjold, "Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier," Opt. Exp. 20, 7263-7273 (2012).
  16. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, J. Lægsgaard, "Distributed mode filtering rod fiber amplifier delivering 292 w with improved mode stability," Opt. Exp. 20, 5742-5753 (2012).
  17. ((2012)) http://www.comsol.com/products/heat-transfer/.
  18. D. C. Brown, H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).
  19. B. Zintzen, T. Langer, J. Geiger, D. Hoffmann, P. Loosen, "Heat transport in solid and air-clad fibers for high-power fiber lasers," Opt. Exp. 15, 16787-16793 (2007).
  20. A. Argyros, T. Birks, S. Leon-Saval, C. M. B. Cordeiro, P. S. J. Russell, "Guidance properties of low-contrast photonic bandgap fibres," Opt. Exp. 13, 2503-2511 (2005).
  21. K. R. Hansen, T. T. Alkeskjold, J. Broeng, J. Lægsgaard, "Thermo-optical effects in high-power ytterbium-doped fiber amplifiers," Opt. Exp. 19, 23965-23980 (2011).

2012 (3)

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, A. Tünnermann, "Thermally induced waveguide changes in active fibers," Opt. Exp. 20, 3997-4008 (2012).

M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, T. T. Alkeskjold, "Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier," Opt. Exp. 20, 7263-7273 (2012).

M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, J. Lægsgaard, "Distributed mode filtering rod fiber amplifier delivering 292 w with improved mode stability," Opt. Exp. 20, 5742-5753 (2012).

2011 (5)

K. R. Hansen, T. T. Alkeskjold, J. Broeng, J. Lægsgaard, "Thermo-optical effects in high-power ytterbium-doped fiber amplifiers," Opt. Exp. 19, 23965-23980 (2011).

J. Nilsson, D. N. Payne, "High-power fiber lasers," Science 332, 921-922 (2011).

F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, A. Tünnermann, "High average power large-pitch fiber amplifier with robust single-mode operation," Opt. Lett. 36, 689-691 (2011).

T. T. Alkeskjold, M. Laurila, L. Scolari, J. Broeng, "Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier," Opt. Exp. 19, 7398-7409 (2011).

A. V. Smith, J. J. Smith, "Mode instability in high power fiber amplifiers," Opt. Exp. 19, 10180-10192 (2011).

2010 (2)

A. Tünnermann, T. Schreiber, J. Limpert, "Fiber lasers and amplifiers: An ultrafast performance evolution," Appl. Opt. 49, F71-F78 (2010).

D. J. Richardson, J. Nilsson, W. A. Clarkson, "High power fiber lasers: Current status and future perspectives," J. Opt. Soc. Amer. B 27, B63-B92 (2010).

2009 (2)

L. Michaille, C. R. Bennett, D. M. Taylor, T. J. Sheperd, "Multicore photonic crystal fiber lasers for high power/energy applications," IEEE J. Sel. Topics Quantum Electron. 15, 328-336 (2009).

T. T. Alkeskjold, "Large-mode-area ytterbium-doped fiber amplifier with distributed narrow spectral filtering and reduced bend sensitivity," Opt. Exp. 17, 16394-16405 (2009).

2008 (1)

K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sørensen, M. Denninger, C. Jakobsen, H. R. Simonsen, "Airclad fiber laser technology," Proc. SPIE 6873, 687307-1-687307-12 (2008).

2007 (1)

B. Zintzen, T. Langer, J. Geiger, D. Hoffmann, P. Loosen, "Heat transport in solid and air-clad fibers for high-power fiber lasers," Opt. Exp. 15, 16787-16793 (2007).

2005 (2)

A. Argyros, T. Birks, S. Leon-Saval, C. M. B. Cordeiro, P. S. J. Russell, "Guidance properties of low-contrast photonic bandgap fibres," Opt. Exp. 13, 2503-2511 (2005).

J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, "High-power rod-type photonic crystal fiber laser," Opt. Exp. 13, 1055-1058 (2005).

2004 (1)

A. Cucinotta, F. Poli, S. Selleri, "Design of erbium-doped triangular photonic-crystal-fiber-based amplifiers," IEEE Photon. Technol. Lett. 16, 2027-2029 (2004).

2003 (1)

A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, M. Zoboli, "Amplification properties of Er3+-doped photonic crystal fibers," J. Lightw. Technol. 21, 782-788 (2003).

2001 (1)

D. C. Brown, H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).

Appl. Opt. (1)

IEEE J. Sel. Topics Quantum Electron. (1)

L. Michaille, C. R. Bennett, D. M. Taylor, T. J. Sheperd, "Multicore photonic crystal fiber lasers for high power/energy applications," IEEE J. Sel. Topics Quantum Electron. 15, 328-336 (2009).

IEEE J. Quantum Electron. (1)

D. C. Brown, H. J. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).

IEEE Photon. Technol. Lett. (1)

A. Cucinotta, F. Poli, S. Selleri, "Design of erbium-doped triangular photonic-crystal-fiber-based amplifiers," IEEE Photon. Technol. Lett. 16, 2027-2029 (2004).

J. Lightw. Technol. (1)

A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, M. Zoboli, "Amplification properties of Er3+-doped photonic crystal fibers," J. Lightw. Technol. 21, 782-788 (2003).

J. Opt. Soc. Amer. B (1)

D. J. Richardson, J. Nilsson, W. A. Clarkson, "High power fiber lasers: Current status and future perspectives," J. Opt. Soc. Amer. B 27, B63-B92 (2010).

Opt. Exp. (3)

J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, "High-power rod-type photonic crystal fiber laser," Opt. Exp. 13, 1055-1058 (2005).

T. T. Alkeskjold, M. Laurila, L. Scolari, J. Broeng, "Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier," Opt. Exp. 19, 7398-7409 (2011).

B. Zintzen, T. Langer, J. Geiger, D. Hoffmann, P. Loosen, "Heat transport in solid and air-clad fibers for high-power fiber lasers," Opt. Exp. 15, 16787-16793 (2007).

Opt. Exp. (7)

A. Argyros, T. Birks, S. Leon-Saval, C. M. B. Cordeiro, P. S. J. Russell, "Guidance properties of low-contrast photonic bandgap fibres," Opt. Exp. 13, 2503-2511 (2005).

K. R. Hansen, T. T. Alkeskjold, J. Broeng, J. Lægsgaard, "Thermo-optical effects in high-power ytterbium-doped fiber amplifiers," Opt. Exp. 19, 23965-23980 (2011).

M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, T. T. Alkeskjold, "Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier," Opt. Exp. 20, 7263-7273 (2012).

M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, J. Lægsgaard, "Distributed mode filtering rod fiber amplifier delivering 292 w with improved mode stability," Opt. Exp. 20, 5742-5753 (2012).

A. V. Smith, J. J. Smith, "Mode instability in high power fiber amplifiers," Opt. Exp. 19, 10180-10192 (2011).

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, A. Tünnermann, "Thermally induced waveguide changes in active fibers," Opt. Exp. 20, 3997-4008 (2012).

T. T. Alkeskjold, "Large-mode-area ytterbium-doped fiber amplifier with distributed narrow spectral filtering and reduced bend sensitivity," Opt. Exp. 17, 16394-16405 (2009).

Opt. Lett. (1)

Proc. SPIE (1)

K. P. Hansen, C. B. Olausson, J. Broeng, K. Mattson, M. D. Nielsen, T. Nikolajsen, P. M. W. Skovgaard, M. H. Sørensen, M. Denninger, C. Jakobsen, H. R. Simonsen, "Airclad fiber laser technology," Proc. SPIE 6873, 687307-1-687307-12 (2008).

Science (1)

J. Nilsson, D. N. Payne, "High-power fiber lasers," Science 332, 921-922 (2011).

Other (2)

F. Poli, A. Cucinotta, S. Selleri, Photonic Crystal Fibers. Properties and Applications (Springer, 2007).

((2012)) http://www.comsol.com/products/heat-transfer/.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.