Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 30,
  • Issue 20,
  • pp. 3281-3287
  • (2012)

Silicon Polarization Beam Splitter Based on an Asymmetrical Evanescent Coupling System With Three Optical Waveguides

Not Accessible

Your library or personal account may give you access

Abstract

A short polarization beam splitter (PBS) is presented based on an asymmetrical evanescent coupling system, which consists of a narrow input waveguide, a narrow output waveguide, and a wide middle optical waveguide between them. The width of the waveguides is designed so that the phase-matching condition is satisfied for the TM fundamental (TM<sub>0</sub>) mode in the narrow input/output waveguide and the first higher order TM (TM<sub>1</sub>) mode in the wide middle waveguide. Meanwhile, there is a significant phase mismatch for the case with TE polarization. Therefore, for the launched TE polarized light, almost no coupling happens when it goes through the coupling region and finally the TE polarized light is output from the through port. For the launched TM<sub>0</sub> mode in the narrow input waveguide, it is completely coupled to the TM<sub>1</sub> mode in the wide middle waveguide by choosing the optimal length of the coupling region. Furthermore, the TM<sub>1</sub> mode excited in the wide middle waveguide is then coupled to the TM<sub>0</sub> mode in the narrow output waveguide through the evanescent coupling between them. A short (~25μm long) PBS is designed based on silicon-on-insulator nanowires, while the gap width is chosen as large as 300 nm to make the fabrication easy. Numerical simulations show that the present PBS has a good fabrication tolerance for the variation of the waveguide width (more than ±20 nm) and a broadband (~50 nm) for an extinction ratio of >15 dB.

© 2012 IEEE

PDF Article
More Like This
Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler

Daoxin Dai and John E Bowers
Opt. Express 19(19) 18614-18620 (2011)

Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire

Xiaowei Guan, Hao Wu, Yaocheng Shi, Lech Wosinski, and Daoxin Dai
Opt. Lett. 38(16) 3005-3008 (2013)

Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler

Daoxin Dai, Zhi Wang, and John E. Bowers
Opt. Lett. 36(13) 2590-2592 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.