Abstract

Fabrication techniques for the manufacture of a high power cladding light stripper are presented. Localized heating and thermal degradation of the recoating materials are the prime limiting factors for the operation of a high power cladding light stripper. In order to overcome this difficulty, the fiber is tapered by hydrofluoric (HF) acid and the surface of the tapered region is exposed to HF acid vapor. The acid vapor creates fine holes and scratches on the fiber surface. A low refractive index polymer is then used to recoat the fiber surface, which extracts the unwanted cladding light from the fiber over a relatively large area. This eliminates the abrupt removal of light and consequently the detrimental thermal effects due to localized heating. The power-handling capability of the device is tested under 90 W of cladding light, and attenuation of 16.7 dB is achieved.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. D. J. Richardson, J. Nilsson, W. A. Clarkson, "High power fiber lasers: Current status and future perspectives," J. Opt. Soc. Amer. B 27, 63-92 (2010).
  2. M. H. Muendel, R. Farrow, K.-H. Liao, D. Woll, J. Luu, C. Zhang, J. J. Morehead, J. Segall, J. Gregg, K. Tai, B. Kharlamov, H. Yu, L. Myers, "Fused fiber pump and signal combiners for a 4-kW ytterbium fiber laser," Proc. SPIE (2011) pp. 791431-1-791431-7.
  3. Y. Xiao, F. Brunet, M. Kanskar, M. Faucher, A. Wetter, N. Holehouse, "1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks," Opt. Exp. 20, 3296-3301 (2012).
  4. Z. Sacks, Z. Schiffer, D. David, "Long wavelength operation of double-clad Tm: Silica fiber lasers," Proc. SPIE (2007) pp. 201-209.
  5. F. El-Diasty, "Laser-scattering-based method for investigation of ultra-low-loss arc fusion-spliced single-mode optical fibers," J. Lightw. Technol. 22, 1539-1542 (2004).
  6. A. Wetter, M. Faucher, B. Sevigny, "High power cladding light strippers," Proc. SPIE (2008) pp. 271-278.
  7. K. Hejaz, A. Babazadeh, R. Poozesh, R. Rezaei-Nasirabad, A. Heydariazar, A. Asgaramidian, J. Sabbaghzadeh, "A 340 W monolithically integrated all-fiber laser design using the master oscillator power amplifier configuration," Proc. SPIE (2011) pp. 800115-1-800115-5.
  8. D. Brown, H. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).
  9. Sh. Todoroki, "Transient propagation mode of fiber fuse leaving no voids," Opt. Exp. 13, 9248-9256 (2005).
  10. A. Carter, B. N. Samson, K. Tankala, D. P. Machewirth, V. Khitrov, U. H. Manyam, F. Gonthier, F. Seguin, "Damage mechanisms in components for fibre lasers and amplifiers," Proc. SPIE (2005) pp. 561-571.
  11. M. Meleshkevich, V. Ilyashenko, O. Shkurikhin, High power fiber laser system with cladding light stripper U.S. Patent 7 839 901B2 (2010).

2012 (1)

Y. Xiao, F. Brunet, M. Kanskar, M. Faucher, A. Wetter, N. Holehouse, "1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks," Opt. Exp. 20, 3296-3301 (2012).

2010 (1)

D. J. Richardson, J. Nilsson, W. A. Clarkson, "High power fiber lasers: Current status and future perspectives," J. Opt. Soc. Amer. B 27, 63-92 (2010).

2005 (1)

Sh. Todoroki, "Transient propagation mode of fiber fuse leaving no voids," Opt. Exp. 13, 9248-9256 (2005).

2004 (1)

F. El-Diasty, "Laser-scattering-based method for investigation of ultra-low-loss arc fusion-spliced single-mode optical fibers," J. Lightw. Technol. 22, 1539-1542 (2004).

2001 (1)

D. Brown, H. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).

IEEE J. Quantum Electron. (1)

D. Brown, H. Hoffman, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," IEEE J. Quantum Electron. 37, 207-217 (2001).

J. Lightw. Technol. (1)

F. El-Diasty, "Laser-scattering-based method for investigation of ultra-low-loss arc fusion-spliced single-mode optical fibers," J. Lightw. Technol. 22, 1539-1542 (2004).

J. Opt. Soc. Amer. B (1)

D. J. Richardson, J. Nilsson, W. A. Clarkson, "High power fiber lasers: Current status and future perspectives," J. Opt. Soc. Amer. B 27, 63-92 (2010).

Opt. Exp. (2)

Y. Xiao, F. Brunet, M. Kanskar, M. Faucher, A. Wetter, N. Holehouse, "1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks," Opt. Exp. 20, 3296-3301 (2012).

Sh. Todoroki, "Transient propagation mode of fiber fuse leaving no voids," Opt. Exp. 13, 9248-9256 (2005).

Other (6)

A. Carter, B. N. Samson, K. Tankala, D. P. Machewirth, V. Khitrov, U. H. Manyam, F. Gonthier, F. Seguin, "Damage mechanisms in components for fibre lasers and amplifiers," Proc. SPIE (2005) pp. 561-571.

M. Meleshkevich, V. Ilyashenko, O. Shkurikhin, High power fiber laser system with cladding light stripper U.S. Patent 7 839 901B2 (2010).

Z. Sacks, Z. Schiffer, D. David, "Long wavelength operation of double-clad Tm: Silica fiber lasers," Proc. SPIE (2007) pp. 201-209.

M. H. Muendel, R. Farrow, K.-H. Liao, D. Woll, J. Luu, C. Zhang, J. J. Morehead, J. Segall, J. Gregg, K. Tai, B. Kharlamov, H. Yu, L. Myers, "Fused fiber pump and signal combiners for a 4-kW ytterbium fiber laser," Proc. SPIE (2011) pp. 791431-1-791431-7.

A. Wetter, M. Faucher, B. Sevigny, "High power cladding light strippers," Proc. SPIE (2008) pp. 271-278.

K. Hejaz, A. Babazadeh, R. Poozesh, R. Rezaei-Nasirabad, A. Heydariazar, A. Asgaramidian, J. Sabbaghzadeh, "A 340 W monolithically integrated all-fiber laser design using the master oscillator power amplifier configuration," Proc. SPIE (2011) pp. 800115-1-800115-5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.