Abstract

We show analytically as well as experimentally a photonic technique for generation of frequency-tunable microwave signals. The technique involves propagating an array of uniformly spaced optical combs with identical comb profile into a length of dispersive single-mode fiber (SMF) prior to photodetection. A new scheme that involves a supercontinuum source and a Fourier-domain programmable optical processor as a spectral filter is proposed to generate the required array of optical combs. For an initial optical comb with a fixed repetition rate and a given length of standard SMF, our scheme shows that by choosing appropriate values of the number of optical combs, the number of comb lines in each optical comb, as well as the frequency spacing between the adjacent optical combs, we can generate a microwave signal whose frequency can be tuned to any integer multiple of the optical comb's repetition frequency that lies within the bandwidth of the photodetector. Based on the proposed scheme, using a 2 GHz supercontinuum source as an initial optical comb, we demonstrate the generation of stable microwave signals tunable to 8, 10, and 12 GHz.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. H.-J. Song, N. Shimizu, T. Furuta, K. Suizu, H. Ito, T. Nagatsuma, "Broadband-frequency-tunable sub-terahertz wave generation using an optical comb, AWGs, optical switches, and a uni-traveling carrier photodiode for spectroscopic applications," J. Lightw. Technol. 26, 2521-2530 (2008).
  2. J. Millo, R. Boudot, M. Lours, P. Y. Bourgeois, A. N. Luiten, Y. Le Coq, Y. Kersale, G. Santarelli, "Ultra-low-noise microwave extraction from fiber-based optical frequency comb," Opt. Lett. 34, 3707-3709 (2009).
  3. Z. Deng, J. Yao, "Photonic generation of microwave signal using a rational harmonic mode-locked fiber ring laser," IEEE Trans. Microw. Theory Tech. 54, 763-767 (2006).
  4. M. Qasymeh, W. Li, J. Yao, "Frequency-tunable microwave generation based on time-delayed optical combs," IEEE Trans. Microw. Theory Tech. 59, 2987-2993 (2011).
  5. L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, "Microwave signal generation with injection-locked laser diodes," Electron. Lett 19, 491-493 (1983).
  6. U. Gliese, T. N. Nielsen, S. Norskov, K. E. Stubkjaer, "Multifunctional fiber-optic microwave links based on remote heterodyne detection," IEEE Trans. Microw. Theory Tech. 46, 458-468 (1998).
  7. J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrow linewidth millimetre wave signals," Electron. Lett. 28, 2309-2311 (1992).
  8. W. Li, J. Yao, "Investigation of photonically assisted microwave frequency multiplication based on external modulation," IEEE Trans. Microw. Theory Tech. 58, 3259-3268 (2010).
  9. D. J. Derickson, R. J. Helkey, A. Mar, J. G. Wasserbauer, Y. G. Wey, J. E. Bowers, "Microwave and millimeter wave signal generation using mode-locked semiconductor lasers with intra-waveguide saturable absorbers," Proc. IEEE MTT-S Int. Microw. Symp. Digest (1992) pp. 753-756.
  10. M. Hyodo, M. Tani, S. Matsuura, N. Onodera, K. Sakai, "Generation of millimetre-wave radiation using a dual-longitudinal mode microchip laser," Electron. Lett. 32, 1589-1591 (1996).
  11. U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, B. Broberg, "A wideband heterodyne optical phase-locked loop for generation of 3โ€“18 GHz microwave carriers," IEEE Photon. Technol. Lett. 4, 936-938 (1992).
  12. L. A. Johansson, A. J. Seeds, "Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop," IEEE Photon. Technol. Lett. 12, 690-692 (2000).
  13. J. U. Kang, M. Y. Frankel, R. D. Esman, "Demonstration of microwave frequency shifting by use of a highly chirped mode-locked fiber laser," Opt. Lett. 23, 1188-1188 (1998).
  14. J. Azana, N. K. Berger, B. Levit, V. Smulakovsky, B. Fischer, "Frequency shifting of microwave signals by use of a general temporal self-imaging (Talbot) effect in optical fibers," Opt. Lett. 29, 2849-2851 (2004).
  15. A. S. Weling, D. H. Auston, "Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space," J. Opt. Soc. Amer. B (Opt. Phys.) 13, 2783-2783 (1996).
  16. H. Chi, F. Zeng, J. Yao, "Photonic generation of microwave signals based on pulse shaping," IEEE Photon. Technol. Lett. 19, 668-670 (2007).
  17. H. Chi, J. Yao, "An approach to photonic generation of high-frequency phase-coded RF pulses," IEEE Photon. Technol. Lett. 19, 768-770 (2007).
  18. J. Stigwall, A. Wiberg, "Tunable terahertz signal generation by chirped pulse photomixing," IEEE Photon. Technol. Lett. 19, 931-933 (2007).
  19. J. H. Wong, H. Q. Lam, S. Aditya, K. E. K. Lee, V. Wong, P. H. Lim, K. Wu, C. Ouyang, P. P. Shum, "Photonic generation of tunable continuous-wave microwave signals using a temporally stretched and chirped pulse-train," J. Lightw. Technol. 30, 1269-1271 (2012).
  20. S. Fukushima, C. F. C. Silva, Y. Muramoto, A. J. Seeds, "Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode," J. Lightw. Technol. 21, 3043-3051 (2003).
  21. M. Musha, A. Ueda, M. Horikoshi, K. Nakagawa, M. Ishiguro, K. Ueda, H. Ito, "A highly stable mm-wave synthesizer realized by mixing two lasers locked to an optical frequency comb generator," Opt. Commun. 240, 201-208 (2004).
  22. V. Torres-Company, L. R. Chen, "Radio-frequency waveform generator with time-multiplexing capabilities based on multiwavelength pulse compression," Opt. Exp. 17, 22553-22565 (2009).
  23. G. Agrawal, Nonlinear Fiber Optics (Elsevier Academic, 2001).
  24. J. H. Wong, H. Q. Lam, E. K. K. Lee, V. Wong, P. H. Lim, S. Aditya, P. P. Shum, "Generation of flat supercontinuum for time-stretched analog-to-digital converters," Proc. Int. Quantum Electron. Conf./Conf. Lasers Electro-Opt. Pacific Rim (2011) pp. 256-258.
  25. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, B. J. Eggleton, "Dispersion trimming in a reconfigurable wavelength selective switch," J. Lightw. Technol. 26, 73-78 (2008).
  26. Z. Junqiang, F. Songnian, L. Feng, W. J. Haur, S. Aditya, P. P. Shum, K. E. K. Lee, "Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry-Perot filter-based multi-wavelength tunable laser," J. Lightw. Technol. 29, 3381-3386 (2011).

2012 (1)

J. H. Wong, H. Q. Lam, S. Aditya, K. E. K. Lee, V. Wong, P. H. Lim, K. Wu, C. Ouyang, P. P. Shum, "Photonic generation of tunable continuous-wave microwave signals using a temporally stretched and chirped pulse-train," J. Lightw. Technol. 30, 1269-1271 (2012).

2011 (2)

M. Qasymeh, W. Li, J. Yao, "Frequency-tunable microwave generation based on time-delayed optical combs," IEEE Trans. Microw. Theory Tech. 59, 2987-2993 (2011).

Z. Junqiang, F. Songnian, L. Feng, W. J. Haur, S. Aditya, P. P. Shum, K. E. K. Lee, "Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry-Perot filter-based multi-wavelength tunable laser," J. Lightw. Technol. 29, 3381-3386 (2011).

2010 (1)

W. Li, J. Yao, "Investigation of photonically assisted microwave frequency multiplication based on external modulation," IEEE Trans. Microw. Theory Tech. 58, 3259-3268 (2010).

2009 (2)

V. Torres-Company, L. R. Chen, "Radio-frequency waveform generator with time-multiplexing capabilities based on multiwavelength pulse compression," Opt. Exp. 17, 22553-22565 (2009).

J. Millo, R. Boudot, M. Lours, P. Y. Bourgeois, A. N. Luiten, Y. Le Coq, Y. Kersale, G. Santarelli, "Ultra-low-noise microwave extraction from fiber-based optical frequency comb," Opt. Lett. 34, 3707-3709 (2009).

2008 (2)

H.-J. Song, N. Shimizu, T. Furuta, K. Suizu, H. Ito, T. Nagatsuma, "Broadband-frequency-tunable sub-terahertz wave generation using an optical comb, AWGs, optical switches, and a uni-traveling carrier photodiode for spectroscopic applications," J. Lightw. Technol. 26, 2521-2530 (2008).

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, B. J. Eggleton, "Dispersion trimming in a reconfigurable wavelength selective switch," J. Lightw. Technol. 26, 73-78 (2008).

2007 (3)

H. Chi, F. Zeng, J. Yao, "Photonic generation of microwave signals based on pulse shaping," IEEE Photon. Technol. Lett. 19, 668-670 (2007).

H. Chi, J. Yao, "An approach to photonic generation of high-frequency phase-coded RF pulses," IEEE Photon. Technol. Lett. 19, 768-770 (2007).

J. Stigwall, A. Wiberg, "Tunable terahertz signal generation by chirped pulse photomixing," IEEE Photon. Technol. Lett. 19, 931-933 (2007).

2006 (1)

Z. Deng, J. Yao, "Photonic generation of microwave signal using a rational harmonic mode-locked fiber ring laser," IEEE Trans. Microw. Theory Tech. 54, 763-767 (2006).

2004 (2)

M. Musha, A. Ueda, M. Horikoshi, K. Nakagawa, M. Ishiguro, K. Ueda, H. Ito, "A highly stable mm-wave synthesizer realized by mixing two lasers locked to an optical frequency comb generator," Opt. Commun. 240, 201-208 (2004).

J. Azana, N. K. Berger, B. Levit, V. Smulakovsky, B. Fischer, "Frequency shifting of microwave signals by use of a general temporal self-imaging (Talbot) effect in optical fibers," Opt. Lett. 29, 2849-2851 (2004).

2003 (1)

S. Fukushima, C. F. C. Silva, Y. Muramoto, A. J. Seeds, "Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode," J. Lightw. Technol. 21, 3043-3051 (2003).

2000 (1)

L. A. Johansson, A. J. Seeds, "Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop," IEEE Photon. Technol. Lett. 12, 690-692 (2000).

1998 (2)

U. Gliese, T. N. Nielsen, S. Norskov, K. E. Stubkjaer, "Multifunctional fiber-optic microwave links based on remote heterodyne detection," IEEE Trans. Microw. Theory Tech. 46, 458-468 (1998).

J. U. Kang, M. Y. Frankel, R. D. Esman, "Demonstration of microwave frequency shifting by use of a highly chirped mode-locked fiber laser," Opt. Lett. 23, 1188-1188 (1998).

1996 (2)

A. S. Weling, D. H. Auston, "Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space," J. Opt. Soc. Amer. B (Opt. Phys.) 13, 2783-2783 (1996).

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, K. Sakai, "Generation of millimetre-wave radiation using a dual-longitudinal mode microchip laser," Electron. Lett. 32, 1589-1591 (1996).

1992 (2)

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, B. Broberg, "A wideband heterodyne optical phase-locked loop for generation of 3โ€“18 GHz microwave carriers," IEEE Photon. Technol. Lett. 4, 936-938 (1992).

J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrow linewidth millimetre wave signals," Electron. Lett. 28, 2309-2311 (1992).

1983 (1)

L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, "Microwave signal generation with injection-locked laser diodes," Electron. Lett 19, 491-493 (1983).

Electron. Lett (1)

L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, "Microwave signal generation with injection-locked laser diodes," Electron. Lett 19, 491-493 (1983).

Electron. Lett. (1)

J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrow linewidth millimetre wave signals," Electron. Lett. 28, 2309-2311 (1992).

Electron. Lett. (1)

M. Hyodo, M. Tani, S. Matsuura, N. Onodera, K. Sakai, "Generation of millimetre-wave radiation using a dual-longitudinal mode microchip laser," Electron. Lett. 32, 1589-1591 (1996).

IEEE Photon. Technol. Lett. (1)

L. A. Johansson, A. J. Seeds, "Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase-lock loop," IEEE Photon. Technol. Lett. 12, 690-692 (2000).

IEEE Trans. Microw. Theory Tech. (2)

W. Li, J. Yao, "Investigation of photonically assisted microwave frequency multiplication based on external modulation," IEEE Trans. Microw. Theory Tech. 58, 3259-3268 (2010).

U. Gliese, T. N. Nielsen, S. Norskov, K. E. Stubkjaer, "Multifunctional fiber-optic microwave links based on remote heterodyne detection," IEEE Trans. Microw. Theory Tech. 46, 458-468 (1998).

IEEE Photon. Technol. Lett. (1)

J. Stigwall, A. Wiberg, "Tunable terahertz signal generation by chirped pulse photomixing," IEEE Photon. Technol. Lett. 19, 931-933 (2007).

IEEE Photon. Technol. Lett. (1)

H. Chi, J. Yao, "An approach to photonic generation of high-frequency phase-coded RF pulses," IEEE Photon. Technol. Lett. 19, 768-770 (2007).

IEEE Photon. Technol. Lett. (2)

H. Chi, F. Zeng, J. Yao, "Photonic generation of microwave signals based on pulse shaping," IEEE Photon. Technol. Lett. 19, 668-670 (2007).

U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren, B. Broberg, "A wideband heterodyne optical phase-locked loop for generation of 3โ€“18 GHz microwave carriers," IEEE Photon. Technol. Lett. 4, 936-938 (1992).

IEEE Trans. Microw. Theory Tech. (2)

Z. Deng, J. Yao, "Photonic generation of microwave signal using a rational harmonic mode-locked fiber ring laser," IEEE Trans. Microw. Theory Tech. 54, 763-767 (2006).

M. Qasymeh, W. Li, J. Yao, "Frequency-tunable microwave generation based on time-delayed optical combs," IEEE Trans. Microw. Theory Tech. 59, 2987-2993 (2011).

J. Lightw. Technol. (2)

S. Fukushima, C. F. C. Silva, Y. Muramoto, A. J. Seeds, "Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode," J. Lightw. Technol. 21, 3043-3051 (2003).

H.-J. Song, N. Shimizu, T. Furuta, K. Suizu, H. Ito, T. Nagatsuma, "Broadband-frequency-tunable sub-terahertz wave generation using an optical comb, AWGs, optical switches, and a uni-traveling carrier photodiode for spectroscopic applications," J. Lightw. Technol. 26, 2521-2530 (2008).

J. Lightw. Technol. (3)

J. H. Wong, H. Q. Lam, S. Aditya, K. E. K. Lee, V. Wong, P. H. Lim, K. Wu, C. Ouyang, P. P. Shum, "Photonic generation of tunable continuous-wave microwave signals using a temporally stretched and chirped pulse-train," J. Lightw. Technol. 30, 1269-1271 (2012).

M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, B. J. Eggleton, "Dispersion trimming in a reconfigurable wavelength selective switch," J. Lightw. Technol. 26, 73-78 (2008).

Z. Junqiang, F. Songnian, L. Feng, W. J. Haur, S. Aditya, P. P. Shum, K. E. K. Lee, "Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry-Perot filter-based multi-wavelength tunable laser," J. Lightw. Technol. 29, 3381-3386 (2011).

J. Opt. Soc. Amer. B (Opt. Phys.) (1)

A. S. Weling, D. H. Auston, "Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space," J. Opt. Soc. Amer. B (Opt. Phys.) 13, 2783-2783 (1996).

Opt. Commun. (1)

M. Musha, A. Ueda, M. Horikoshi, K. Nakagawa, M. Ishiguro, K. Ueda, H. Ito, "A highly stable mm-wave synthesizer realized by mixing two lasers locked to an optical frequency comb generator," Opt. Commun. 240, 201-208 (2004).

Opt. Exp. (1)

V. Torres-Company, L. R. Chen, "Radio-frequency waveform generator with time-multiplexing capabilities based on multiwavelength pulse compression," Opt. Exp. 17, 22553-22565 (2009).

Opt. Lett. (3)

Other (3)

G. Agrawal, Nonlinear Fiber Optics (Elsevier Academic, 2001).

J. H. Wong, H. Q. Lam, E. K. K. Lee, V. Wong, P. H. Lim, S. Aditya, P. P. Shum, "Generation of flat supercontinuum for time-stretched analog-to-digital converters," Proc. Int. Quantum Electron. Conf./Conf. Lasers Electro-Opt. Pacific Rim (2011) pp. 256-258.

D. J. Derickson, R. J. Helkey, A. Mar, J. G. Wasserbauer, Y. G. Wey, J. E. Bowers, "Microwave and millimeter wave signal generation using mode-locked semiconductor lasers with intra-waveguide saturable absorbers," Proc. IEEE MTT-S Int. Microw. Symp. Digest (1992) pp. 753-756.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.