Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 30,
  • Issue 19,
  • pp. 3081-3088
  • (2012)

Exploiting Equalization Techniques for Improving Data Rates in Organic Optoelectronic Devices for Visible Light Communications

Not Accessible

Your library or personal account may give you access

Abstract

This paper presents the use of equalization techniques in visible light communication (VLC) systems in order to increase the data rate. Here we investigate two VLC links a silicon (Si) light emitting diode (LED) and an organic photodetector (OPD), and an organic LED (OLED) plus an Si photodetector (PD), together with three equalization schemes of an RC high pass equalizer, a fractionally spaced zero-forcing equalizer (ZF) and an artificial neural network (ANN). In addition we utilize a pre-distortion scheme to enhance the performance of the digital equalizers. For both systems the bit rate achieved are 750 kb/s from a raw bandwidth (BW) of 30 kHz and 550 kb/s from a raw BW of 93 kHz.

© 2012 Crown

PDF Article
More Like This
Visible light communications: 3.75 Mbits/s data rate with a 160 kHz bandwidth organic photodetector and artificial neural network equalization [Invited]

Zabih Ghassemlooy, Paul Anthony Haigh, Francesco Arca, Sandro Francesco Tedde, Oliver Hayden, Ioannis Papakonstantinou, and Sujan Rajbhandari
Photon. Res. 1(2) 65-68 (2013)

Organic solar cells as high-speed data detectors for visible light communication

Shuyu Zhang, Dobroslav Tsonev, Stefan Videv, Sanjay Ghosh, Graham A. Turnbull, Ifor D. W. Samuel, and Harald Haas
Optica 2(7) 607-610 (2015)

Improvements of the modulation bandwidth and data rate of green-emitting CsPbBr3 perovskite quantum dots for Gbps visible light communication

Xinyi Shan, Shijie Zhu, Runze Lin, Yanzhe Li, Zhou Wang, Zeyuan Qian, Xugao Cui, Ran Liu, and Pengfei Tian
Opt. Express 31(2) 2195-2207 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.