Abstract

A prototypical design of AlGaN deep ultraviolet (DUV) laser diodes (LDs) on AlN substrates employing tapered electron blocking layer is presented. Two-dimensional optoelectronic simulation predicts lasing at a target wavelength of 250 nm. Degradation of optical gain associated with spatial separation of electron and hole wave functions inside the active region may be considerably reduced in designs featuring quaternary AlInGaN barriers, by virtue of polarization charge matching. A systematic method for selection of polarization-free quaternary barrier compositions is proposed for 250 nm DUV LD designs, accompanied by a sensitivity analysis. The selection procedure presented here is readily applied to LDs and light-emitting diodes operating at other wavelengths.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription