Abstract

Current high-capacity and long-reach optical fiber links would not be possible without optical amplification. Especially the use of erbium-doped fiber amplifiers (EDFAs) has revolutionized optical communication systems during the last two decades. Although the amplification process and various effects occurring in rare earth doped amplifiers have been already well understood and accurately modeled, evolution of thermodynamic entropy and other thermodynamic aspects have not been sufficiently considered in the past. This paper analyzes the amplification process in EDFA from the thermodynamic point of view and proposes a novel modeling approach to evaluate both energy and entropy dynamics. The model is described in detail and some exemplary numerical results are presented.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. S. Aleksic, "Energy efficiency of electronic and optical network elements," IEEE J. Sel. Topics Quantum Electron. 17, 296-308 (2011).
  2. A. Tzanakaki, K. Katrinis, T. Politi, A. Stavdas, M. Pikavet, P. Van Daele, D. Simeonidou, M. J. O. Mahony, S. Aleksic, L. Wosinska, P. Monti, "Dimensioning the future pan-European optical network with energy efficiency considerations," J. Opt. Comput. Network. 3, 272-280 (2011).
  3. W. Van Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martens, P. Demeester, "Power consumption in telecommunication networks: Overview and reduction strategies," IEEE Commun. Mag. 49, 62-69 (2011).
  4. M. Fiorani, M. Casoni, S. Aleksic, "Performance and power consumption analysis of a hybrid optical core node," J. Opt. Comput. Network. 3, 502-513 (2011).
  5. “Outline for the First Global IT Strategy for CO2 Reduction,” WWTF (2008).
  6. S. Aleksic, "Considerations towards a holistic model of energy dynamics in global networks," Proc. 11th Int. Conf. Telecommun. (2011) pp. 237-242.
  7. S. Aleksic, "Thermodynamic aspects of communication and information processing systems," Proc. 13th Int. Conf. Transparent Opt. Networks (2011).
  8. F. E. Auzel, "Materials and devices using double pumped phosphors with energy transfer," Proc. IEEE 61, 758-786 (1976).
  9. P. T. Landsberg, D. A. Evans, "Thermodynamic limits for some light-propagating devices," Phys. Rev. 166, 242-246 (1968).
  10. J. E. Geusic, E. O. Schulz-DuBois, H. E. D. Scovil, "Quantum equivalent of the Carnot cycle," Phys. Rev. 156, 343-351 (1967).
  11. R. W. DeGrasse, E. O. Schulz-DuBoisand, H. E. D. Scovil, "The three-level solid state traveling-wave maser," Bell Syst. Tech. J. 38, 305-334 (1959).
  12. C. R. Giles, E. Desurvire, "Modeling erbium-doped fiber amplifiers," J. Lightw. Technol. 9, 271-283 (1991).
  13. P. C. Becker, N. A. Olsson, J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).
  14. L. D. Landau, "On the thermodynamics of photoluminescence," J. Phys. (Moscow), USSR 10, 503-506 (1946).
  15. M. A. Weinstein, "Thermodynamic limitation on the conversion of heat into light," J. Opt. Soc. Amer. A 50, 597-602 (1960).
  16. P. T. Landsberg, G. Tonge, "Thermodynamic energy conversion efficiencies," J. Appl. Phys. 51, R1-R20 (1980).
  17. M. Planck, The Theory of Heat Radiation (Blakiston, 1914) pp. 169.
  18. L. D. Landau, E. M. Lifshitz, Statistical Physics (Pergamon, 1958) pp. 155.
  19. S. Aleksic, Energy-Efficient Communication Networks for Improved Global Energy Productivity (Springer Telecommun Syst., 2012).

2011 (4)

S. Aleksic, "Energy efficiency of electronic and optical network elements," IEEE J. Sel. Topics Quantum Electron. 17, 296-308 (2011).

A. Tzanakaki, K. Katrinis, T. Politi, A. Stavdas, M. Pikavet, P. Van Daele, D. Simeonidou, M. J. O. Mahony, S. Aleksic, L. Wosinska, P. Monti, "Dimensioning the future pan-European optical network with energy efficiency considerations," J. Opt. Comput. Network. 3, 272-280 (2011).

W. Van Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martens, P. Demeester, "Power consumption in telecommunication networks: Overview and reduction strategies," IEEE Commun. Mag. 49, 62-69 (2011).

M. Fiorani, M. Casoni, S. Aleksic, "Performance and power consumption analysis of a hybrid optical core node," J. Opt. Comput. Network. 3, 502-513 (2011).

1991 (1)

C. R. Giles, E. Desurvire, "Modeling erbium-doped fiber amplifiers," J. Lightw. Technol. 9, 271-283 (1991).

1980 (1)

P. T. Landsberg, G. Tonge, "Thermodynamic energy conversion efficiencies," J. Appl. Phys. 51, R1-R20 (1980).

1976 (1)

F. E. Auzel, "Materials and devices using double pumped phosphors with energy transfer," Proc. IEEE 61, 758-786 (1976).

1968 (1)

P. T. Landsberg, D. A. Evans, "Thermodynamic limits for some light-propagating devices," Phys. Rev. 166, 242-246 (1968).

1967 (1)

J. E. Geusic, E. O. Schulz-DuBois, H. E. D. Scovil, "Quantum equivalent of the Carnot cycle," Phys. Rev. 156, 343-351 (1967).

1960 (1)

M. A. Weinstein, "Thermodynamic limitation on the conversion of heat into light," J. Opt. Soc. Amer. A 50, 597-602 (1960).

1959 (1)

R. W. DeGrasse, E. O. Schulz-DuBoisand, H. E. D. Scovil, "The three-level solid state traveling-wave maser," Bell Syst. Tech. J. 38, 305-334 (1959).

1946 (1)

L. D. Landau, "On the thermodynamics of photoluminescence," J. Phys. (Moscow), USSR 10, 503-506 (1946).

Bell Syst. Tech. J. (1)

R. W. DeGrasse, E. O. Schulz-DuBoisand, H. E. D. Scovil, "The three-level solid state traveling-wave maser," Bell Syst. Tech. J. 38, 305-334 (1959).

IEEE Commun. Mag. (1)

W. Van Heddeghem, M. Deruyck, B. Puype, B. Lannoo, W. Joseph, D. Colle, L. Martens, P. Demeester, "Power consumption in telecommunication networks: Overview and reduction strategies," IEEE Commun. Mag. 49, 62-69 (2011).

IEEE J. Sel. Topics Quantum Electron. (1)

S. Aleksic, "Energy efficiency of electronic and optical network elements," IEEE J. Sel. Topics Quantum Electron. 17, 296-308 (2011).

J. Opt. Comput. Network. (2)

A. Tzanakaki, K. Katrinis, T. Politi, A. Stavdas, M. Pikavet, P. Van Daele, D. Simeonidou, M. J. O. Mahony, S. Aleksic, L. Wosinska, P. Monti, "Dimensioning the future pan-European optical network with energy efficiency considerations," J. Opt. Comput. Network. 3, 272-280 (2011).

M. Fiorani, M. Casoni, S. Aleksic, "Performance and power consumption analysis of a hybrid optical core node," J. Opt. Comput. Network. 3, 502-513 (2011).

J. Appl. Phys. (1)

P. T. Landsberg, G. Tonge, "Thermodynamic energy conversion efficiencies," J. Appl. Phys. 51, R1-R20 (1980).

J. Lightw. Technol. (1)

C. R. Giles, E. Desurvire, "Modeling erbium-doped fiber amplifiers," J. Lightw. Technol. 9, 271-283 (1991).

J. Opt. Soc. Amer. A (1)

M. A. Weinstein, "Thermodynamic limitation on the conversion of heat into light," J. Opt. Soc. Amer. A 50, 597-602 (1960).

J. Phys. (Moscow), USSR (1)

L. D. Landau, "On the thermodynamics of photoluminescence," J. Phys. (Moscow), USSR 10, 503-506 (1946).

Phys. Rev. (2)

P. T. Landsberg, D. A. Evans, "Thermodynamic limits for some light-propagating devices," Phys. Rev. 166, 242-246 (1968).

J. E. Geusic, E. O. Schulz-DuBois, H. E. D. Scovil, "Quantum equivalent of the Carnot cycle," Phys. Rev. 156, 343-351 (1967).

Proc. IEEE (1)

F. E. Auzel, "Materials and devices using double pumped phosphors with energy transfer," Proc. IEEE 61, 758-786 (1976).

Other (7)

P. C. Becker, N. A. Olsson, J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).

M. Planck, The Theory of Heat Radiation (Blakiston, 1914) pp. 169.

L. D. Landau, E. M. Lifshitz, Statistical Physics (Pergamon, 1958) pp. 155.

S. Aleksic, Energy-Efficient Communication Networks for Improved Global Energy Productivity (Springer Telecommun Syst., 2012).

“Outline for the First Global IT Strategy for CO2 Reduction,” WWTF (2008).

S. Aleksic, "Considerations towards a holistic model of energy dynamics in global networks," Proc. 11th Int. Conf. Telecommun. (2011) pp. 237-242.

S. Aleksic, "Thermodynamic aspects of communication and information processing systems," Proc. 13th Int. Conf. Transparent Opt. Networks (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.