Abstract

Current high-capacity and long-reach optical fiber links would not be possible without optical amplification. Especially the use of erbium-doped fiber amplifiers (EDFAs) has revolutionized optical communication systems during the last two decades. Although the amplification process and various effects occurring in rare earth doped amplifiers have been already well understood and accurately modeled, evolution of thermodynamic entropy and other thermodynamic aspects have not been sufficiently considered in the past. This paper analyzes the amplification process in EDFA from the thermodynamic point of view and proposes a novel modeling approach to evaluate both energy and entropy dynamics. The model is described in detail and some exemplary numerical results are presented.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription