Abstract

We demonstrated a wavelength scanning time division multiplexing of 1000 ultra-weak fiber Bragg gratings (FBG) for distributed temperature sensing. The strong multiplexing capability and low crosstalk of the ultra-weak FBG sensors is investigated through both theoretical analysis and experiment. An automated FBG fabrication system was developed for fast 1000-FBG fabrication. The measurement accuracy of Bragg wavelengths for more than 80% FBGs is less than 20 pm, corresponding to 2 °C in temperature.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. Y. Dai, Y. Liu, J. Leng, G. Deng, A. Asundi, "A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring," Opt. Lasers Eng. 47, 1028-1033 (2009).
  2. P. J. Henderson, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, "Highly-multiplexed grating-sensors for temperature-referenced quasi-static measurements of strain in concrete bridges," Proc. OFS (1999) pp. 320-323.
  3. K. P. Koo, A. B. Tveten, S. T. Vohra, "Dense wavelength division multiplexing of fiber Bragg grating sensors using CDMA," Electron. Lett. 35, 165-167 (1999).
  4. Y. Yu, L. Lui, H. Tam, W. Chung, "Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system," IEEE Photon. Technol. Lett. 13, 702-704 (2001).
  5. Y. J. Rao, A. B. L. Ribeiro, D. A. Jackson, L. Zhang, I. Bennion, "Combined spatial-and time-division-multiplexing scheme for fiber grating sensors with drift-compensated phase-sensitive detection," Opt. Lett. 20, 2149-2151 (1995).
  6. P. Zhang, H. H. Cercedo-Nunez, B. Qi, G. Pickrell, A. Wang, "Optical time-domain reflectometry interrogation of multiplexing low-reflectance Bragg-grating-based sensor system," Opt. Eng. 42, 1597 (2003).
  7. M. Froggatt, B. Childers, J. Moore, T. Erdogan, "High density strain sensing using optical frequency domain reflectometry," Proc. SPIE (2000) pp. 249-255.
  8. C. C. Chan, W. Jin, D. J. Wang, M. S. Demokan, "Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser," Proc. LEOS (2000) pp. 2-4.
  9. D. J. F. Cooper, T. Coroy, P. W. E. Smith, "Time-division multiplexing of large serial fiber-optic Bragg grating sensor arrays," Appl. Opt. 40, 2643-2654 (2001).
  10. Y. Wang, J. Gong, D. Y. Wang, W. Bi, A. Wang, "A quasi-distributed sensing network with time-division multiplexed fiber Bragg gratings," IEEE Photon. Technol. Lett. 23, 70-72 (2011).
  11. H. Park, S. Lee, U. Paek, Y. Chung, "Noncontact optical fiber coating removal technique with hot air stream," J. Lightw. Technol. 23, 551-557 (2005).
  12. D. K. Chattopadhyay, S. S. Panda, K. V. S. N. Raju, "Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings," Progr. Org. Coat. 54, 10-19 (2005).
  13. K. O. Hill, G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightw. Technol. 15, 1263-1276 (1997).
  14. Y. Rao, "In-fibre Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).
  15. J. M. Gong, C. C. Chan, W. Jin, J. M. K. MacAlpine, M. Zhang, Y. B. Liao, "Enhancement of wavelength detection accuracy in fiber Bragg grating sensors by using a spectrum correlation technique," Opt. Commun. 212, 155-158 (2002).

2011 (1)

Y. Wang, J. Gong, D. Y. Wang, W. Bi, A. Wang, "A quasi-distributed sensing network with time-division multiplexed fiber Bragg gratings," IEEE Photon. Technol. Lett. 23, 70-72 (2011).

2009 (1)

Y. Dai, Y. Liu, J. Leng, G. Deng, A. Asundi, "A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring," Opt. Lasers Eng. 47, 1028-1033 (2009).

2005 (2)

H. Park, S. Lee, U. Paek, Y. Chung, "Noncontact optical fiber coating removal technique with hot air stream," J. Lightw. Technol. 23, 551-557 (2005).

D. K. Chattopadhyay, S. S. Panda, K. V. S. N. Raju, "Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings," Progr. Org. Coat. 54, 10-19 (2005).

2003 (1)

P. Zhang, H. H. Cercedo-Nunez, B. Qi, G. Pickrell, A. Wang, "Optical time-domain reflectometry interrogation of multiplexing low-reflectance Bragg-grating-based sensor system," Opt. Eng. 42, 1597 (2003).

2002 (1)

J. M. Gong, C. C. Chan, W. Jin, J. M. K. MacAlpine, M. Zhang, Y. B. Liao, "Enhancement of wavelength detection accuracy in fiber Bragg grating sensors by using a spectrum correlation technique," Opt. Commun. 212, 155-158 (2002).

2001 (2)

D. J. F. Cooper, T. Coroy, P. W. E. Smith, "Time-division multiplexing of large serial fiber-optic Bragg grating sensor arrays," Appl. Opt. 40, 2643-2654 (2001).

Y. Yu, L. Lui, H. Tam, W. Chung, "Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system," IEEE Photon. Technol. Lett. 13, 702-704 (2001).

1999 (1)

K. P. Koo, A. B. Tveten, S. T. Vohra, "Dense wavelength division multiplexing of fiber Bragg grating sensors using CDMA," Electron. Lett. 35, 165-167 (1999).

1997 (2)

K. O. Hill, G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightw. Technol. 15, 1263-1276 (1997).

Y. Rao, "In-fibre Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).

1995 (1)

Appl. Opt. (1)

Electron. Lett. (1)

K. P. Koo, A. B. Tveten, S. T. Vohra, "Dense wavelength division multiplexing of fiber Bragg grating sensors using CDMA," Electron. Lett. 35, 165-167 (1999).

IEEE Photon. Technol. Lett. (2)

Y. Yu, L. Lui, H. Tam, W. Chung, "Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system," IEEE Photon. Technol. Lett. 13, 702-704 (2001).

Y. Wang, J. Gong, D. Y. Wang, W. Bi, A. Wang, "A quasi-distributed sensing network with time-division multiplexed fiber Bragg gratings," IEEE Photon. Technol. Lett. 23, 70-72 (2011).

J. Lightw. Technol. (2)

H. Park, S. Lee, U. Paek, Y. Chung, "Noncontact optical fiber coating removal technique with hot air stream," J. Lightw. Technol. 23, 551-557 (2005).

K. O. Hill, G. Meltz, "Fiber Bragg grating technology fundamentals and overview," J. Lightw. Technol. 15, 1263-1276 (1997).

Meas. Sci. Technol. (1)

Y. Rao, "In-fibre Bragg grating sensors," Meas. Sci. Technol. 8, 355-375 (1997).

Opt. Commun. (1)

J. M. Gong, C. C. Chan, W. Jin, J. M. K. MacAlpine, M. Zhang, Y. B. Liao, "Enhancement of wavelength detection accuracy in fiber Bragg grating sensors by using a spectrum correlation technique," Opt. Commun. 212, 155-158 (2002).

Opt. Eng. (1)

P. Zhang, H. H. Cercedo-Nunez, B. Qi, G. Pickrell, A. Wang, "Optical time-domain reflectometry interrogation of multiplexing low-reflectance Bragg-grating-based sensor system," Opt. Eng. 42, 1597 (2003).

Opt. Lasers Eng. (1)

Y. Dai, Y. Liu, J. Leng, G. Deng, A. Asundi, "A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring," Opt. Lasers Eng. 47, 1028-1033 (2009).

Opt. Lett. (1)

Progr. Org. Coat. (1)

D. K. Chattopadhyay, S. S. Panda, K. V. S. N. Raju, "Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings," Progr. Org. Coat. 54, 10-19 (2005).

Other (3)

P. J. Henderson, D. J. Webb, D. A. Jackson, L. Zhang, I. Bennion, "Highly-multiplexed grating-sensors for temperature-referenced quasi-static measurements of strain in concrete bridges," Proc. OFS (1999) pp. 320-323.

M. Froggatt, B. Childers, J. Moore, T. Erdogan, "High density strain sensing using optical frequency domain reflectometry," Proc. SPIE (2000) pp. 249-255.

C. C. Chan, W. Jin, D. J. Wang, M. S. Demokan, "Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser," Proc. LEOS (2000) pp. 2-4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.