Abstract

Optical properties of the λ-router basic building block are simulated using a matrix method. Experiments are performed for the λ-router basic building block with multimode-interference (MMI) crossings, which shows large free spectral range (~35 nm) and more than 24 dB on/off contrast of the drop resonance. Theoretical and experimental results reveal that the λ-router basic building block with MMI crossings can suppress the crosstalk (defined as the difference between the drop efficiency and the throughput attenuation at resonance), offer relatively symmetric resonance, and increase the on/off contrast of the drop resonance, compared with a λ-router building block using conventional crossings.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. G. F. Fan, R. Orobtchouk, J. M. Fedeli, "Highly integrated optical 8x8 lambda-router in silicon-on-insulator technology: comparison between the ring and racetrack configuration ," Photon. Eur. Conf. BrusselsBelgium (2010) vol. 7719-14.
  2. M. Masi, R. Orobtchouk, G. F. Fan, J. M. Fedeli, L. Pavesi, "Towards a realistic modeling of ultra-compact racetrack resonators," J. Lightw. Technol. 28, 3233-3242 (2010).
  3. N. S. Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, M. Lipson, "Optical 4×4 hitless silicon router for optical networks-on-chip," Opt. Exp. 16, 15915-15922 (2008).
  4. I. O'Connor, F. Mieyeville, F. Gaffiot, A. Scandurra, G. Nicolescu, "Reduction methods for adapting optical network on chip topologies to specific routing applications," Design Circuits Integr. Syst. GrenobleFrance (2008).
  5. A. Kaźmierczak, W. Bogaerts, E. Drouard, F. Dortu, P. Rojo-Romeo, F. Gaffiot, D. V. Thourhout, D. Giannone, "Highly integrated optical 4×4 crossbar in silicon-on-insulator technology," J. Lightw. Technol. 27, 3317-3323 (2009).
  6. F. Xu, A. W. Poon, "Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings," Opt. Exp. 16, 8649-8657 (2008).
  7. M. K. Chin, S. T. Ho, "Design and modeling of waveguide-coupled single-mode microring resonators," J. Lightw. Technol. 16, 1433-1446 (1998).
  8. Q. Xu, D. Fattal, R. G. Beausoleil, "Silicon microring resonators with 1.5-μm radius," Opt. Exp. 16, 4309-4315 (2008).
  9. R. Marz, Integrated Optics: Design and Modeling (Artech House, 1995) pp. 198-199.
  10. S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908-910 (2002).

2010 (1)

M. Masi, R. Orobtchouk, G. F. Fan, J. M. Fedeli, L. Pavesi, "Towards a realistic modeling of ultra-compact racetrack resonators," J. Lightw. Technol. 28, 3233-3242 (2010).

2009 (1)

A. Kaźmierczak, W. Bogaerts, E. Drouard, F. Dortu, P. Rojo-Romeo, F. Gaffiot, D. V. Thourhout, D. Giannone, "Highly integrated optical 4×4 crossbar in silicon-on-insulator technology," J. Lightw. Technol. 27, 3317-3323 (2009).

2008 (3)

F. Xu, A. W. Poon, "Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings," Opt. Exp. 16, 8649-8657 (2008).

N. S. Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, M. Lipson, "Optical 4×4 hitless silicon router for optical networks-on-chip," Opt. Exp. 16, 15915-15922 (2008).

Q. Xu, D. Fattal, R. G. Beausoleil, "Silicon microring resonators with 1.5-μm radius," Opt. Exp. 16, 4309-4315 (2008).

2002 (1)

S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908-910 (2002).

1998 (1)

M. K. Chin, S. T. Ho, "Design and modeling of waveguide-coupled single-mode microring resonators," J. Lightw. Technol. 16, 1433-1446 (1998).

Appl. Phys. Lett. (1)

S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908-910 (2002).

J. Lightw. Technol. (3)

M. K. Chin, S. T. Ho, "Design and modeling of waveguide-coupled single-mode microring resonators," J. Lightw. Technol. 16, 1433-1446 (1998).

M. Masi, R. Orobtchouk, G. F. Fan, J. M. Fedeli, L. Pavesi, "Towards a realistic modeling of ultra-compact racetrack resonators," J. Lightw. Technol. 28, 3233-3242 (2010).

A. Kaźmierczak, W. Bogaerts, E. Drouard, F. Dortu, P. Rojo-Romeo, F. Gaffiot, D. V. Thourhout, D. Giannone, "Highly integrated optical 4×4 crossbar in silicon-on-insulator technology," J. Lightw. Technol. 27, 3317-3323 (2009).

Opt. Exp. (3)

F. Xu, A. W. Poon, "Silicon cross-connect filters using microring resonator coupled multimode-interference-based waveguide crossings," Opt. Exp. 16, 8649-8657 (2008).

N. S. Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, M. Lipson, "Optical 4×4 hitless silicon router for optical networks-on-chip," Opt. Exp. 16, 15915-15922 (2008).

Q. Xu, D. Fattal, R. G. Beausoleil, "Silicon microring resonators with 1.5-μm radius," Opt. Exp. 16, 4309-4315 (2008).

Other (3)

R. Marz, Integrated Optics: Design and Modeling (Artech House, 1995) pp. 198-199.

G. F. Fan, R. Orobtchouk, J. M. Fedeli, "Highly integrated optical 8x8 lambda-router in silicon-on-insulator technology: comparison between the ring and racetrack configuration ," Photon. Eur. Conf. BrusselsBelgium (2010) vol. 7719-14.

I. O'Connor, F. Mieyeville, F. Gaffiot, A. Scandurra, G. Nicolescu, "Reduction methods for adapting optical network on chip topologies to specific routing applications," Design Circuits Integr. Syst. GrenobleFrance (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.