Abstract

In this paper, we present a new and compact structure for optical amplifiers based on erbium-doped microfiber coil resonators (MCR). The performance of the device is modeled by solving numerically the MCR coupled-mode equations and the rate equations in the steady-state regime. Characteristics of amplifier are analyzed for two-, three-, and four-turn MCRs. The signal gain spectrum is studied in terms of amplifier length, signal wavelength, and signal, and pump power. Simulation results demonstrate that such a device selectively amplifies specific wavelengths due to its resonance nature. It is possible to obtain optical gain as high as 30 dB using a 10 mW pump power and a 0.1 <i>μ</i>W signal power. The amplified peaks show very narrow full-width at half-maximum that are very promising for microlasers.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription