Abstract

The multiplexing capacity of single-/multi-/single- mode (SMS) intrinsic Fabry-Pérot fiber sensor is dramatically enhanced by reducing its insertion loss. This improvement is achieved by controlling the cavity length to promote refocusing of the guided light when entering the lead-out single mode fiber. With this technique, the round-trip insertion loss of the sensor is reduced from about -3 dB on average to below -0.5 dB, and the signal-to-noise-ratio-defined multiplexing capacity is accordingly increased from six to more than twenty. The paper employs a mode theory based approach to rigorously treat the refocusing problem. Other engineering issues, such as splicing condition and sensor additional phase are analyzed and demonstrated as well.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. P. R. Horche, M. Lopez-Amo, M. A. Muriel, J. A. Martin-Pereda, "Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions," IEEE Photon. Technol. Lett. 1, 184-187 (1989).
  2. D. ?onlagic, M. Zavrsnik, "Fiber-optic microbend sensor structure," Opt. Lett. 22, 837-839 (1997).
  3. D. Donlagic, B. Culshaw, "Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber," J. Lightw. Technol. 17, 1856-1868 (1999).
  4. A. Kumar, R. K. Varshney, R. Kumar, "SMS fiber optic microbend sensor structures: Effect of the modal interference," Opt. Commun. 232, 239-244 (2004).
  5. A. Kumar, R. K. Varshney, C. S. Antony, P. Sharma, "Transmission characteristics of SMS fiber optic sensor structures," Opt. Commun. 219, 215-219 (2003).
  6. D. M. Mackie, A. W. Lee, "Slotted multimode-interference devices," Appl. Opt. 43, 6609-6619 (2004).
  7. S. M. Tripathi, A. Kumar, E. Marin, J.-P. Meunier, "Single-multi-single mode structure based band pass/stop fiber optic filter with tunable bandwidth," J. Lightw. Technol. 28, 3535-3541 (2010).
  8. A. Sun, Y. Semenova, G. Farrell, "A novel highly sensitive optical fiber microphone based on single mode-multimode-single mode structure," Microw. Optical Technol. Lett. 53, 442-445 (2011).
  9. W. S. Mohammed, A. Mehta, E. G. Johnson, "Wavelength tunable fiber lens based on multimode interference," J. Lightw. Technol. 22, 469-477 (2004).
  10. Q. Wu, Y. Semenova, P. Wang, G. Farrell, "High sensitivity SMS fiber structure based refractometer: Analysis and experiment," Opt. Exp. 19, 7937-7944 (2011).
  11. Q. Wang, G. Farrell, W. Yan, "Investigation on single-mode-multimode-single-mode fiber structure," J. Lightw. Technol. 26, 512-519 (2008).
  12. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, J.-P. Meunier, "Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures," J. Lightw. Technol. 27, 2348-2356 (2009).
  13. Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, X. Dong, "A hollow-core photonic crystal fiber cavity based multiplexed Fabry–Perot interferometric strain sensor system," IEEE Photon. Technol. Lett. 20, 1329-1331 (2008).
  14. Z. Huang, Y. Zhu, X. Chen, A. Wang, "Intrinsic Fabry–Perot fiber sensor for temperature and strain measurements," IEEE Photon. Technol. Lett. 17, 2403-2405 (2005).
  15. F. Shen, A. Wang, "Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry–Perot interferometers," Appl. Opt. 44, 5206-5214 (2005).
  16. W. Emkey, C. Jack, "Analysis and evaluation of graded-index fiber lenses," J. Lightw. Technol. 5, 1156-1164 (1987).
  17. G. Yuan, G. Yu, R. Yun-Jiang, Z. Tian, W. Yu, "Fiber-optic Fabry–Perot sensor based on periodic focusing effect of graded-index multimode fibers," IEEE Photon. Technol. Lett. 22, 1708-1710 (2010).
  18. Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, H. Xiao, "Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator," IEEE J. Photon. 2, 469-481 (2010).
  19. A. D. Yablon, R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses," IEEE Photon. Technol. Lett. 17, 118-120 (2005).
  20. C. Ma, A. Wang, "Multimode excitation-induced phase shifts in intrinsic Fabry–Perot interferometric fiber sensor spectra," Appl. Opt. 49, 4836-4845 (2010).
  21. C. Ma, E. M. Lally, A. Wang, "Toward eliminating signal demodulation jumps in optical fiber intrinsic Fabry–Perot interferometric sensors," J. Lightw. Technol. 29, 1913-1919 (2011).
  22. A. D. Yablon, Optical Fiber Fusion Splicing (Springer, 2005).
  23. M. Froggatt, J. Moore, "High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter," Appl. Opt. 37, 1735-1740 (1998).
  24. A. K. Ghatak, K. Thyagarajan, An Introduction to Fiber Optics (Cambridge Univ. Press, 1998).
  25. M. D. Feit, J. J. A. Fleck, "Light propagation in graded-index optical fibers," Appl. Opt. 17, 3990-3998 (1978).

2011 (3)

A. Sun, Y. Semenova, G. Farrell, "A novel highly sensitive optical fiber microphone based on single mode-multimode-single mode structure," Microw. Optical Technol. Lett. 53, 442-445 (2011).

Q. Wu, Y. Semenova, P. Wang, G. Farrell, "High sensitivity SMS fiber structure based refractometer: Analysis and experiment," Opt. Exp. 19, 7937-7944 (2011).

C. Ma, E. M. Lally, A. Wang, "Toward eliminating signal demodulation jumps in optical fiber intrinsic Fabry–Perot interferometric sensors," J. Lightw. Technol. 29, 1913-1919 (2011).

2010 (4)

S. M. Tripathi, A. Kumar, E. Marin, J.-P. Meunier, "Single-multi-single mode structure based band pass/stop fiber optic filter with tunable bandwidth," J. Lightw. Technol. 28, 3535-3541 (2010).

C. Ma, A. Wang, "Multimode excitation-induced phase shifts in intrinsic Fabry–Perot interferometric fiber sensor spectra," Appl. Opt. 49, 4836-4845 (2010).

G. Yuan, G. Yu, R. Yun-Jiang, Z. Tian, W. Yu, "Fiber-optic Fabry–Perot sensor based on periodic focusing effect of graded-index multimode fibers," IEEE Photon. Technol. Lett. 22, 1708-1710 (2010).

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, H. Xiao, "Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator," IEEE J. Photon. 2, 469-481 (2010).

2009 (1)

S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, J.-P. Meunier, "Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures," J. Lightw. Technol. 27, 2348-2356 (2009).

2008 (2)

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, X. Dong, "A hollow-core photonic crystal fiber cavity based multiplexed Fabry–Perot interferometric strain sensor system," IEEE Photon. Technol. Lett. 20, 1329-1331 (2008).

Q. Wang, G. Farrell, W. Yan, "Investigation on single-mode-multimode-single-mode fiber structure," J. Lightw. Technol. 26, 512-519 (2008).

2005 (3)

A. D. Yablon, R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses," IEEE Photon. Technol. Lett. 17, 118-120 (2005).

Z. Huang, Y. Zhu, X. Chen, A. Wang, "Intrinsic Fabry–Perot fiber sensor for temperature and strain measurements," IEEE Photon. Technol. Lett. 17, 2403-2405 (2005).

F. Shen, A. Wang, "Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry–Perot interferometers," Appl. Opt. 44, 5206-5214 (2005).

2004 (3)

W. S. Mohammed, A. Mehta, E. G. Johnson, "Wavelength tunable fiber lens based on multimode interference," J. Lightw. Technol. 22, 469-477 (2004).

D. M. Mackie, A. W. Lee, "Slotted multimode-interference devices," Appl. Opt. 43, 6609-6619 (2004).

A. Kumar, R. K. Varshney, R. Kumar, "SMS fiber optic microbend sensor structures: Effect of the modal interference," Opt. Commun. 232, 239-244 (2004).

2003 (1)

A. Kumar, R. K. Varshney, C. S. Antony, P. Sharma, "Transmission characteristics of SMS fiber optic sensor structures," Opt. Commun. 219, 215-219 (2003).

1999 (1)

D. Donlagic, B. Culshaw, "Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber," J. Lightw. Technol. 17, 1856-1868 (1999).

1998 (1)

M. Froggatt, J. Moore, "High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter," Appl. Opt. 37, 1735-1740 (1998).

1997 (1)

1989 (1)

P. R. Horche, M. Lopez-Amo, M. A. Muriel, J. A. Martin-Pereda, "Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions," IEEE Photon. Technol. Lett. 1, 184-187 (1989).

1987 (1)

W. Emkey, C. Jack, "Analysis and evaluation of graded-index fiber lenses," J. Lightw. Technol. 5, 1156-1164 (1987).

1978 (1)

Appl. Opt. (1)

M. Froggatt, J. Moore, "High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter," Appl. Opt. 37, 1735-1740 (1998).

Appl. Opt. (4)

IEEE J. Photon. (1)

Y. Zhang, Y. Li, T. Wei, X. Lan, Y. Huang, G. Chen, H. Xiao, "Fringe visibility enhanced extrinsic Fabry–Perot interferometer using a graded index fiber collimator," IEEE J. Photon. 2, 469-481 (2010).

IEEE Photon. Technol. Lett. (2)

A. D. Yablon, R. T. Bise, "Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses," IEEE Photon. Technol. Lett. 17, 118-120 (2005).

G. Yuan, G. Yu, R. Yun-Jiang, Z. Tian, W. Yu, "Fiber-optic Fabry–Perot sensor based on periodic focusing effect of graded-index multimode fibers," IEEE Photon. Technol. Lett. 22, 1708-1710 (2010).

IEEE Photon. Technol. Lett. (1)

Z. Huang, Y. Zhu, X. Chen, A. Wang, "Intrinsic Fabry–Perot fiber sensor for temperature and strain measurements," IEEE Photon. Technol. Lett. 17, 2403-2405 (2005).

IEEE Photon. Technol. Lett. (2)

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, X. Dong, "A hollow-core photonic crystal fiber cavity based multiplexed Fabry–Perot interferometric strain sensor system," IEEE Photon. Technol. Lett. 20, 1329-1331 (2008).

P. R. Horche, M. Lopez-Amo, M. A. Muriel, J. A. Martin-Pereda, "Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions," IEEE Photon. Technol. Lett. 1, 184-187 (1989).

J. Lightw. Technol. (1)

S. M. Tripathi, A. Kumar, E. Marin, J.-P. Meunier, "Single-multi-single mode structure based band pass/stop fiber optic filter with tunable bandwidth," J. Lightw. Technol. 28, 3535-3541 (2010).

J. Lightw. Technol. (6)

W. S. Mohammed, A. Mehta, E. G. Johnson, "Wavelength tunable fiber lens based on multimode interference," J. Lightw. Technol. 22, 469-477 (2004).

D. Donlagic, B. Culshaw, "Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber," J. Lightw. Technol. 17, 1856-1868 (1999).

Q. Wang, G. Farrell, W. Yan, "Investigation on single-mode-multimode-single-mode fiber structure," J. Lightw. Technol. 26, 512-519 (2008).

S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, J.-P. Meunier, "Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures," J. Lightw. Technol. 27, 2348-2356 (2009).

W. Emkey, C. Jack, "Analysis and evaluation of graded-index fiber lenses," J. Lightw. Technol. 5, 1156-1164 (1987).

C. Ma, E. M. Lally, A. Wang, "Toward eliminating signal demodulation jumps in optical fiber intrinsic Fabry–Perot interferometric sensors," J. Lightw. Technol. 29, 1913-1919 (2011).

Microw. Optical Technol. Lett. (1)

A. Sun, Y. Semenova, G. Farrell, "A novel highly sensitive optical fiber microphone based on single mode-multimode-single mode structure," Microw. Optical Technol. Lett. 53, 442-445 (2011).

Opt. Commun. (1)

A. Kumar, R. K. Varshney, C. S. Antony, P. Sharma, "Transmission characteristics of SMS fiber optic sensor structures," Opt. Commun. 219, 215-219 (2003).

Opt. Exp. (1)

Q. Wu, Y. Semenova, P. Wang, G. Farrell, "High sensitivity SMS fiber structure based refractometer: Analysis and experiment," Opt. Exp. 19, 7937-7944 (2011).

Opt. Commun. (1)

A. Kumar, R. K. Varshney, R. Kumar, "SMS fiber optic microbend sensor structures: Effect of the modal interference," Opt. Commun. 232, 239-244 (2004).

Opt. Lett. (1)

Other (2)

A. D. Yablon, Optical Fiber Fusion Splicing (Springer, 2005).

A. K. Ghatak, K. Thyagarajan, An Introduction to Fiber Optics (Cambridge Univ. Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.