Abstract

We examine wave propagation in few-mode and multimode fibers with a small index difference between core and cladding, where linearly polarized (LP) “modes” serve as a highly useful simplified solution. However, for a nonzero index difference, each LP “mode” decomposes into two true fiber waveguide modes, typically an HE and an EH mode. These two constituent modes have different group delays, which results in an effect termed modal birefringence. This effect needs to be understood in the design of mode-multiplexed transmission systems. We report an analysis of modal birefringence including scaling rules for fiber design, and provide numerical results for about 50 of the lower order modes.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B. Goebel, "Capacity limits of optical fiber networks," J. Lightw. Technol. 28, 662-701 (2010).
  2. P. J. Winzer, G. J. Foschini, "MIMO capacities and outage probabilities in spatially multiplexed optical transport systems," Opt. Exp. 19, 16680-16696 (2011).
  3. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, R. Lingle, "Space division multiplexing over 10 km of three-mode fiber using coherent 6×6 MIMO processing," Proc. Opt. Fiber Commun. Conf. (2011) pp. 1-3.
  4. C. Koebele, M. Salsi, L. Milord, R. Ryf, C. Bolle, P. Sillard, S. Bigo, G. Charlet, "40 km transmission of five mode division multiplexed data streams at 100 Gb/s with low MIMO-DSP complexity," Proc. 37th Eur. Conf. Opt. Commun. (2011) pp. 1-3.
  5. J. R. Carson, S. P. Mead, S. A. Schelkunoff, "Hyper-frequency waveguides—Mathematical theory," Bell Syst. Tech. J. 15, 310-333 (1936).
  6. E. Snitzer, "Cylindrical dielectric waveguide modes," J. Opt. Soc. Amer. 51, 491-498 (1961).
  7. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).
  8. M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).
  9. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).
  10. H.-G. Unger, Planar Optical Waveguides and Fibres (Clarendon, 1977).
  11. A. W. Snyder, "Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide," IEEE Trans. Microw. Theory Tech. MTT-17, 1130-1138 (1969).
  12. D. Gloge, "Weakly guiding fibers," Appl. Opt. 10, 2252-2258 (1971).
  13. K.-P. Ho, J. M. Kahn, "Statistics of group delays in multimode fiber with strong mode coupling," J. Lightw. Technol. 29, 3119-3127 (2011).
  14. A. Mecozzi, C. Antonelli, M. Shtaif, P. J. Winzer, "Modal dispersion in fibers with multiple mode transmission," Opt. Exp. 20, 11718-11733 (2012).

2012 (1)

A. Mecozzi, C. Antonelli, M. Shtaif, P. J. Winzer, "Modal dispersion in fibers with multiple mode transmission," Opt. Exp. 20, 11718-11733 (2012).

2011 (2)

K.-P. Ho, J. M. Kahn, "Statistics of group delays in multimode fiber with strong mode coupling," J. Lightw. Technol. 29, 3119-3127 (2011).

P. J. Winzer, G. J. Foschini, "MIMO capacities and outage probabilities in spatially multiplexed optical transport systems," Opt. Exp. 19, 16680-16696 (2011).

2010 (1)

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B. Goebel, "Capacity limits of optical fiber networks," J. Lightw. Technol. 28, 662-701 (2010).

1971 (1)

1969 (1)

A. W. Snyder, "Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide," IEEE Trans. Microw. Theory Tech. MTT-17, 1130-1138 (1969).

1961 (1)

E. Snitzer, "Cylindrical dielectric waveguide modes," J. Opt. Soc. Amer. 51, 491-498 (1961).

1936 (1)

J. R. Carson, S. P. Mead, S. A. Schelkunoff, "Hyper-frequency waveguides—Mathematical theory," Bell Syst. Tech. J. 15, 310-333 (1936).

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

J. R. Carson, S. P. Mead, S. A. Schelkunoff, "Hyper-frequency waveguides—Mathematical theory," Bell Syst. Tech. J. 15, 310-333 (1936).

IEEE Trans. Microw. Theory Tech. (1)

A. W. Snyder, "Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide," IEEE Trans. Microw. Theory Tech. MTT-17, 1130-1138 (1969).

J. Lightw. Technol. (2)

K.-P. Ho, J. M. Kahn, "Statistics of group delays in multimode fiber with strong mode coupling," J. Lightw. Technol. 29, 3119-3127 (2011).

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B. Goebel, "Capacity limits of optical fiber networks," J. Lightw. Technol. 28, 662-701 (2010).

J. Opt. Soc. Amer. (1)

E. Snitzer, "Cylindrical dielectric waveguide modes," J. Opt. Soc. Amer. 51, 491-498 (1961).

Opt. Exp. (2)

P. J. Winzer, G. J. Foschini, "MIMO capacities and outage probabilities in spatially multiplexed optical transport systems," Opt. Exp. 19, 16680-16696 (2011).

A. Mecozzi, C. Antonelli, M. Shtaif, P. J. Winzer, "Modal dispersion in fibers with multiple mode transmission," Opt. Exp. 20, 11718-11733 (2012).

Other (6)

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, R. Lingle, "Space division multiplexing over 10 km of three-mode fiber using coherent 6×6 MIMO processing," Proc. Opt. Fiber Commun. Conf. (2011) pp. 1-3.

C. Koebele, M. Salsi, L. Milord, R. Ryf, C. Bolle, P. Sillard, S. Bigo, G. Charlet, "40 km transmission of five mode division multiplexed data streams at 100 Gb/s with low MIMO-DSP complexity," Proc. 37th Eur. Conf. Opt. Commun. (2011) pp. 1-3.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).

M. J. Adams, An Introduction to Optical Waveguides (Wiley, 1981).

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).

H.-G. Unger, Planar Optical Waveguides and Fibres (Clarendon, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.