Abstract

We examine wave propagation in few-mode and multimode fibers with a small index difference between core and cladding, where linearly polarized (LP) “modes” serve as a highly useful simplified solution. However, for a nonzero index difference, each LP “mode” decomposes into two true fiber waveguide modes, typically an HE and an EH mode. These two constituent modes have different group delays, which results in an effect termed modal birefringence. This effect needs to be understood in the design of mode-multiplexed transmission systems. We report an analysis of modal birefringence including scaling rules for fiber design, and provide numerical results for about 50 of the lower order modes.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription