Abstract

We analyze the optical properties including chromatic dispersion, birefringence, and nonlinear coefficient dependence on the ellipticity of photonic nanowires. We propose a linear approximation to determine the equivalent-circular photonic nanowire exhibiting similar optical characteristics with the elliptical nanowire. We find strong birefringence up to the order of $10^{- 2}$ in elliptical photonic nanowires that could be very attractive for optical fiber sensors and stable combs. We also investigate the effect of the ellipticity on the supercontinuum generation which is found to be detrimental to the spectral broadening.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
  2. M. A. Foster, A. C. Turner, M. Lipson, A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Exp. 16, 1300-1320 (2008).
  3. L. Tong, J. Lou, E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Exp. 12, 1025-1035 (2004).
  4. M. Foster, A. L. Gaeta, Q. Cao, R. Trebino, "Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires," Opt. Exp. 13, 6848-6855 (2005).
  5. A. Ben Salem, R. Cherif, M. Zghal, "Low-energy single-optical-cycle soliton self-compression in photonic nanowires," J. Nanophoton. 5, 059506-1-059506-6 (2011).
  6. A. Ben Salem, R. Cherif, M. Zghal, "Soliton-self compression in highly nonlinear chalcogenide photonic nanowires with ultralow pulse energy," Opt. Exp. 19, 19955-19966 (2011).
  7. M. Zghal, R. Cherif, "Impact of small geometrical imperfections on chromatic dispersion and birefringence in photonic crystal fibers," Opt. Eng. 46, 128002-1-128002-7 (2007).
  8. N. A. Issa, M. A. V. Eijkelenborg, M. Fellew, F. Cox, G. Henry, M. C. J. Large, "Fabrication and study of microstructured optical fibers with elliptical holes," Opt. Lett. 29, 1336-1338 (2004).
  9. L. Wang, D. Yang, "Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core," Opt. Exp. 15, 8892-8897 (2007).
  10. S. Lu, W. Li, H. Guo, M. Lu, "Analysis of birefringent and dispersive properties of photonic crystal fibers," Appl. Opt. 50, 5798-5802 (2011).
  11. S. E. Kim, B. H. Kim, C. G. Lee, S. Lee, K. Oh, C. S. Kee, "Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion," Opt. Exp. 20, 1385-1391 (2012).
  12. H. Xuan, J. Ju, W. Jin, "Highly birefringent optical microfibers," Opt. Exp. 18, 3828-3839 (2010).
  13. M. Zghal, R. Chatta, F. Bahloul, R. Attia, D. Pagnoux, P. Roy, G. Mélin, L. Gasca, "Full vector modal analysis of microstructured optical fiber propagation characteristics," Proc. SPIE (2004) pp. 313-322.
  14. G. Brambilla, "Optical fibre nanotaper sensors," Opt. Fiber Technol. 16, 331-342 (2010).
  15. C. Themistos, M. Rajarajan, B. M. Azizur-Rahman, K. T. V. Grattan, "Characterization of silica nanowires for optical sensing," J. Lightw. Technol. 27, 5537-5542 (2009).
  16. M. Sumetsky, "Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators," J. Lightw. Technol. 26, 21-27 (2008).
  17. Y. H. Li, L. M. Tong, "Mach–Zehnder interferometers assembled with optical microfibers or nanofibers," Opt. Lett. 33, 303-305 (2008).
  18. Q. Yang, X. S. Jiang, X. Guo, Y. Chen, L. M. Tong, "Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity," Appl. Phys. Lett. 94, 101108-1-101108-3 (2009).
  19. M. A. Foster, K. D. Moll, A. L. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Exp. 12, 2880-2887 (2004).
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  21. A. Ben Salem, R. Cherif, M. Zghal, "Highly birefringent photonic crystal fiber for coherent infrared supercontinuum generation," Proc. PIERS (2011) pp. 1247-1251.

2012 (1)

S. E. Kim, B. H. Kim, C. G. Lee, S. Lee, K. Oh, C. S. Kee, "Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion," Opt. Exp. 20, 1385-1391 (2012).

2011 (3)

A. Ben Salem, R. Cherif, M. Zghal, "Low-energy single-optical-cycle soliton self-compression in photonic nanowires," J. Nanophoton. 5, 059506-1-059506-6 (2011).

A. Ben Salem, R. Cherif, M. Zghal, "Soliton-self compression in highly nonlinear chalcogenide photonic nanowires with ultralow pulse energy," Opt. Exp. 19, 19955-19966 (2011).

S. Lu, W. Li, H. Guo, M. Lu, "Analysis of birefringent and dispersive properties of photonic crystal fibers," Appl. Opt. 50, 5798-5802 (2011).

2010 (2)

H. Xuan, J. Ju, W. Jin, "Highly birefringent optical microfibers," Opt. Exp. 18, 3828-3839 (2010).

G. Brambilla, "Optical fibre nanotaper sensors," Opt. Fiber Technol. 16, 331-342 (2010).

2009 (2)

C. Themistos, M. Rajarajan, B. M. Azizur-Rahman, K. T. V. Grattan, "Characterization of silica nanowires for optical sensing," J. Lightw. Technol. 27, 5537-5542 (2009).

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, L. M. Tong, "Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity," Appl. Phys. Lett. 94, 101108-1-101108-3 (2009).

2008 (3)

M. Sumetsky, "Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators," J. Lightw. Technol. 26, 21-27 (2008).

Y. H. Li, L. M. Tong, "Mach–Zehnder interferometers assembled with optical microfibers or nanofibers," Opt. Lett. 33, 303-305 (2008).

M. A. Foster, A. C. Turner, M. Lipson, A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Exp. 16, 1300-1320 (2008).

2007 (2)

M. Zghal, R. Cherif, "Impact of small geometrical imperfections on chromatic dispersion and birefringence in photonic crystal fibers," Opt. Eng. 46, 128002-1-128002-7 (2007).

L. Wang, D. Yang, "Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core," Opt. Exp. 15, 8892-8897 (2007).

2005 (1)

M. Foster, A. L. Gaeta, Q. Cao, R. Trebino, "Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires," Opt. Exp. 13, 6848-6855 (2005).

2004 (3)

L. Tong, J. Lou, E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Exp. 12, 1025-1035 (2004).

N. A. Issa, M. A. V. Eijkelenborg, M. Fellew, F. Cox, G. Henry, M. C. J. Large, "Fabrication and study of microstructured optical fibers with elliptical holes," Opt. Lett. 29, 1336-1338 (2004).

M. A. Foster, K. D. Moll, A. L. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Exp. 12, 2880-2887 (2004).

2003 (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Q. Yang, X. S. Jiang, X. Guo, Y. Chen, L. M. Tong, "Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity," Appl. Phys. Lett. 94, 101108-1-101108-3 (2009).

J. Nanophoton. (1)

A. Ben Salem, R. Cherif, M. Zghal, "Low-energy single-optical-cycle soliton self-compression in photonic nanowires," J. Nanophoton. 5, 059506-1-059506-6 (2011).

J. Lightw. Technol. (2)

C. Themistos, M. Rajarajan, B. M. Azizur-Rahman, K. T. V. Grattan, "Characterization of silica nanowires for optical sensing," J. Lightw. Technol. 27, 5537-5542 (2009).

M. Sumetsky, "Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators," J. Lightw. Technol. 26, 21-27 (2008).

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).

Opt. Exp. (2)

M. Foster, A. L. Gaeta, Q. Cao, R. Trebino, "Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires," Opt. Exp. 13, 6848-6855 (2005).

S. E. Kim, B. H. Kim, C. G. Lee, S. Lee, K. Oh, C. S. Kee, "Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion," Opt. Exp. 20, 1385-1391 (2012).

Opt. Lett. (1)

Y. H. Li, L. M. Tong, "Mach–Zehnder interferometers assembled with optical microfibers or nanofibers," Opt. Lett. 33, 303-305 (2008).

Opt. Eng. (1)

M. Zghal, R. Cherif, "Impact of small geometrical imperfections on chromatic dispersion and birefringence in photonic crystal fibers," Opt. Eng. 46, 128002-1-128002-7 (2007).

Opt. Exp. (6)

H. Xuan, J. Ju, W. Jin, "Highly birefringent optical microfibers," Opt. Exp. 18, 3828-3839 (2010).

M. A. Foster, A. C. Turner, M. Lipson, A. L. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Exp. 16, 1300-1320 (2008).

L. Tong, J. Lou, E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Exp. 12, 1025-1035 (2004).

A. Ben Salem, R. Cherif, M. Zghal, "Soliton-self compression in highly nonlinear chalcogenide photonic nanowires with ultralow pulse energy," Opt. Exp. 19, 19955-19966 (2011).

L. Wang, D. Yang, "Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core," Opt. Exp. 15, 8892-8897 (2007).

M. A. Foster, K. D. Moll, A. L. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Exp. 12, 2880-2887 (2004).

Opt. Fiber Technol. (1)

G. Brambilla, "Optical fibre nanotaper sensors," Opt. Fiber Technol. 16, 331-342 (2010).

Opt. Lett. (1)

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

A. Ben Salem, R. Cherif, M. Zghal, "Highly birefringent photonic crystal fiber for coherent infrared supercontinuum generation," Proc. PIERS (2011) pp. 1247-1251.

M. Zghal, R. Chatta, F. Bahloul, R. Attia, D. Pagnoux, P. Roy, G. Mélin, L. Gasca, "Full vector modal analysis of microstructured optical fiber propagation characteristics," Proc. SPIE (2004) pp. 313-322.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.