Abstract

A novel, simple, and short cavity design of single longitudinal mode (SLM) tunable erbium-doped fiber ring laser using a graphene-based saturable absorber is proposed and demonstrated as a tunable signal source. The SLM output is then mixed with another output signal from a tunable laser source (TLS) to generate tunable radio frequency (RF) signals. The tunable SLM fiber ring laser uses a short length of 1 m highly doped erbium-doped fiber as the gain medium. Graphene is used as a saturable absorber to generate the SLM operation, as opposed to the commonly used unpumped erbium-doped fiber. The tuning range of the fiber ring laser is determined by a tunable fiber Bragg grating, which can be tuned from 1547.88 to 1559.88 nm. A continuous wavelength spacing tuning range of 0.020–0.050 nm is obtained between the output of the SLM fiber ring laser and the TLS which is then mixed in a 6 GHz bandwidth optical-to-electrical convertor. This generates a corresponding RF signal of between 2.4 and 5.9 GHz with a low variation in output power. The current RF signal generation is limited by the frequency bandwidth of the optical-to-electrical convertor.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. S. Pan, J. Yao, "A wavelength switchable single longitudinal mode dual-wavelength erbium doped fiber laser for switchable microwave generation," Opt. Exp. 17, 5414-5419 (2009).
  2. R. C. Williamson, "RF photonics," J. Lightw. Technol. 26, 1145-1153 (2008).
  3. W. Liu, M. Jiang, D. Chen, S. He, "Dual wavelength single longitudinal mode polarization maintaining fiber laser and its application in microwave generation," J. Lightw. Technol. 27, 4455-4459 (2009).
  4. J. Capmany, D. Novak, "Microwave photonics combine two worlds," Nature Photon. 1, 319-330 (2007).
  5. P. O. Hedekvist, B. E. Olsson, A. Wiberg, "Microwave harmonic frequency generation utilizing the properties of an optical phase modulator," J. Lightw. Technol. 22, 882-886 (2004).
  6. A. J. Seeds, K. J. Williams, "Microwave photonics," J. Lightw. Technol. 24, 4628-4641 (2006).
  7. R. Drori, M. Einat, D. Shur, E. Jerby, G. Rosenman, R. Advani, R. J. Temkin, C. Pralong, "Demonsration of microwave generation by a ferroelectric cathode tube," Appl. Phys. Lett. 74, 335-337 (1999).
  8. W. Li, J. Yao, "Microwave generation based on optical domain microwave frequency octupling," IEEE Photon. Technol. Lett. 22, 24-26 (2010).
  9. Z. Fan, M. Dagenais, "Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop," IEEE. Trans. Microw. Theory Tech. 45, 1296-1300 (1997).
  10. Z. Li, M. Li, H. Chi, X. Zhang, J. Yao, "Photonic generation of phase coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating," IEEE Microw. Wireless Compon. Lett. 21, 694-696 (2011).
  11. R. T. Ramos, A. J. Seeds, "Fast heterodyne optical phase loop using double quantum-well laser diodes," Electron. Lett. 28, 82-83 (1992).
  12. J. Genest, M. Chamberland, P. Tremblay, M. Tetu, "Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers," IEEE J. Quantum Electron 33, 989-998 (1997).
  13. L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, "Microwave signal generation with injection locked laser-diodes," Electron. Lett. 19, 491-493 (1983).
  14. T. H. Wu, J. Wu, Y. J. Chiul, "Novel ultrawide-band (UWB) photonic generation through photodetection and cross absorption modulation in a single electroabsorption modulator," Opt. Exp. 18, 3379-3384 (2010).
  15. G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, C. Bélisle, "Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microw. Theory Tech. 53, 3090-3097 (2005).
  16. Y. Yao, X. F. Chen, Y. T. Dai, S. Z. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187-189 (2006).
  17. X. Chen, Z. Deng, J. Yao, "Photonic generation of microwave signal using a dual wavelength single longitudinal mode fiber ring laser," IEEE Trans. Microw. Theory Tech. 54, 804-809 (2006).
  18. J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, P. Shum, "Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser," Appl. Phys. B 91, 99-103 (2008).
  19. S. Baunel, O. Brox, J. Kresnel, G. Sahin, B. Sartouis, "Optical microwave source," Electron. Lett. 38, 334-335 (2002).
  20. J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrow linewidth millimeter-wave signals," Electron. Lett. 28, 2309-2310 (1992).
  21. J. Sun, Y. Dai, X. Chen, Y. Zhang, S. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).
  22. G. Chen, D. Huang, X. Zhang, H. Cao, "Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber," Opt. Lett. 33, 554-556 (2008).
  23. D. Chen, H. Fu, W. Liu, Y. Wei, S. He, "Dual wavelength single longitudinal mode erbium doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation," Electron. Lett. 44, 459-461 (2008).
  24. G. E. Villanueva, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, P. Millan, "High frequency microwave signal generation using dual wavelength emission of cascaded DFB fiber lasers with wavelength spacing tunability," Opt. Commun. 283, 5165-5168 (2010).
  25. X. Wang, W. Mao, M. Al-Mumin, S. A. Pappert, J. Hong, G. Li, "Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers," IEEE Photon. Technol. Lett. 11, 1292-1294 (1999).
  26. H. Ahmad, M. Z. Zulkifli, A. A. Latif, K. Thambiratnam, S. W. Harun, "Dual wavelength fibre laser with tunable channel spacing using an SOA and dual AWGs," J. Modern Opt. 56, 1768-1773 (2009).
  27. A. A. Latif, M. Z. Zulkifli, N. A. Awang, "A simple linear cavity dual-wavelength fiber laser using AWG as wavelength selective mechanism," Laser Phys. 20, 2006-2010 (2010).
  28. S. Pan, X. Zhao, C. Lou, "Switchable single longitudinal mode dual wavelength fiber ring laser using hybrid gain medium," Opt. Lett. 3, 764-766 (2008).
  29. X. He, D. N. Wang, C. R. Liao, "Tunable and switchable dual wavelength single longitudinal mode erbium doped fiber lasers," J. Lightw. Technol. 29, 842-849 (2011).
  30. F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, "Graphene photonics and optoelectronics," Nature Photon. 4, 611-622 (2010).
  31. Y. W. Song, S. Y. Jang, W. S. Han, M. K. Bae, "Graphene mode lockers for fiber lasers functioned with evanescent field interaction," App. Phys. Lett. 96, 051122-1-051122-3 (2010).
  32. H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, K. P. Loh, "Graphene mode locked, wavelength tunable, dissipative, soliton fiber laser," App. Phys. Lett. 96, 111112-1-111112-3 (2010).
  33. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, A. C. Ferrari, "Graphene Q-switched, tunable fiber laser," App. Phys. Lett. 98, 073106-1-073106-3 (2011).
  34. W. J. Cao, H. Y. Wang, A. P. Luo, Z. C. Luo, W.-C. Xu, "Graphene-based, 50 nm wideband tunable passively Q-switched fiber laser," Laser Phys. Lett. 9, 54-58 (2011).
  35. L. Wei, D. P. Zhou, H. Y. Fen, W. K. Liu, "Graphene-based Q-switched erbium-doped fiber laser with wide pulse-repetition-rate range," IEEE Photon. Technol. Lett. 24, 309-311 (2012).
  36. H. Ahmad, M. Z. Zulkifli, A. A. Latif, M. H. Jemangin, S. S. Chong, S. W. Harun, "Tunable single longitudinal mode S-band fiber laser using a 3 m length of erbium doped fiber," J. Modern Opt. 59, 1-6 (2012).
  37. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, "Broadband graphene polarizer," Nature Photon. 5, 411-415 (2011).
  38. B. Shuve, J. H. Thywissen, "Enhanced Pauli blocking of light scattering in a trapped Fermi gas," J. Phys. B: At. Mol. Opt. Phys. 43, 15301-15308(8) (2010).

2012 (2)

L. Wei, D. P. Zhou, H. Y. Fen, W. K. Liu, "Graphene-based Q-switched erbium-doped fiber laser with wide pulse-repetition-rate range," IEEE Photon. Technol. Lett. 24, 309-311 (2012).

H. Ahmad, M. Z. Zulkifli, A. A. Latif, M. H. Jemangin, S. S. Chong, S. W. Harun, "Tunable single longitudinal mode S-band fiber laser using a 3 m length of erbium doped fiber," J. Modern Opt. 59, 1-6 (2012).

2011 (5)

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, "Broadband graphene polarizer," Nature Photon. 5, 411-415 (2011).

Z. Li, M. Li, H. Chi, X. Zhang, J. Yao, "Photonic generation of phase coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating," IEEE Microw. Wireless Compon. Lett. 21, 694-696 (2011).

X. He, D. N. Wang, C. R. Liao, "Tunable and switchable dual wavelength single longitudinal mode erbium doped fiber lasers," J. Lightw. Technol. 29, 842-849 (2011).

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, A. C. Ferrari, "Graphene Q-switched, tunable fiber laser," App. Phys. Lett. 98, 073106-1-073106-3 (2011).

W. J. Cao, H. Y. Wang, A. P. Luo, Z. C. Luo, W.-C. Xu, "Graphene-based, 50 nm wideband tunable passively Q-switched fiber laser," Laser Phys. Lett. 9, 54-58 (2011).

2010 (8)

A. A. Latif, M. Z. Zulkifli, N. A. Awang, "A simple linear cavity dual-wavelength fiber laser using AWG as wavelength selective mechanism," Laser Phys. 20, 2006-2010 (2010).

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, "Graphene photonics and optoelectronics," Nature Photon. 4, 611-622 (2010).

Y. W. Song, S. Y. Jang, W. S. Han, M. K. Bae, "Graphene mode lockers for fiber lasers functioned with evanescent field interaction," App. Phys. Lett. 96, 051122-1-051122-3 (2010).

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, K. P. Loh, "Graphene mode locked, wavelength tunable, dissipative, soliton fiber laser," App. Phys. Lett. 96, 111112-1-111112-3 (2010).

G. E. Villanueva, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, P. Millan, "High frequency microwave signal generation using dual wavelength emission of cascaded DFB fiber lasers with wavelength spacing tunability," Opt. Commun. 283, 5165-5168 (2010).

T. H. Wu, J. Wu, Y. J. Chiul, "Novel ultrawide-band (UWB) photonic generation through photodetection and cross absorption modulation in a single electroabsorption modulator," Opt. Exp. 18, 3379-3384 (2010).

W. Li, J. Yao, "Microwave generation based on optical domain microwave frequency octupling," IEEE Photon. Technol. Lett. 22, 24-26 (2010).

B. Shuve, J. H. Thywissen, "Enhanced Pauli blocking of light scattering in a trapped Fermi gas," J. Phys. B: At. Mol. Opt. Phys. 43, 15301-15308(8) (2010).

2009 (3)

S. Pan, J. Yao, "A wavelength switchable single longitudinal mode dual-wavelength erbium doped fiber laser for switchable microwave generation," Opt. Exp. 17, 5414-5419 (2009).

W. Liu, M. Jiang, D. Chen, S. He, "Dual wavelength single longitudinal mode polarization maintaining fiber laser and its application in microwave generation," J. Lightw. Technol. 27, 4455-4459 (2009).

H. Ahmad, M. Z. Zulkifli, A. A. Latif, K. Thambiratnam, S. W. Harun, "Dual wavelength fibre laser with tunable channel spacing using an SOA and dual AWGs," J. Modern Opt. 56, 1768-1773 (2009).

2008 (5)

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, P. Shum, "Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser," Appl. Phys. B 91, 99-103 (2008).

G. Chen, D. Huang, X. Zhang, H. Cao, "Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber," Opt. Lett. 33, 554-556 (2008).

D. Chen, H. Fu, W. Liu, Y. Wei, S. He, "Dual wavelength single longitudinal mode erbium doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation," Electron. Lett. 44, 459-461 (2008).

S. Pan, X. Zhao, C. Lou, "Switchable single longitudinal mode dual wavelength fiber ring laser using hybrid gain medium," Opt. Lett. 3, 764-766 (2008).

R. C. Williamson, "RF photonics," J. Lightw. Technol. 26, 1145-1153 (2008).

2007 (1)

J. Capmany, D. Novak, "Microwave photonics combine two worlds," Nature Photon. 1, 319-330 (2007).

2006 (4)

A. J. Seeds, K. J. Williams, "Microwave photonics," J. Lightw. Technol. 24, 4628-4641 (2006).

Y. Yao, X. F. Chen, Y. T. Dai, S. Z. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187-189 (2006).

X. Chen, Z. Deng, J. Yao, "Photonic generation of microwave signal using a dual wavelength single longitudinal mode fiber ring laser," IEEE Trans. Microw. Theory Tech. 54, 804-809 (2006).

J. Sun, Y. Dai, X. Chen, Y. Zhang, S. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).

2005 (1)

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, C. Bélisle, "Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microw. Theory Tech. 53, 3090-3097 (2005).

2004 (1)

P. O. Hedekvist, B. E. Olsson, A. Wiberg, "Microwave harmonic frequency generation utilizing the properties of an optical phase modulator," J. Lightw. Technol. 22, 882-886 (2004).

2002 (1)

S. Baunel, O. Brox, J. Kresnel, G. Sahin, B. Sartouis, "Optical microwave source," Electron. Lett. 38, 334-335 (2002).

1999 (2)

X. Wang, W. Mao, M. Al-Mumin, S. A. Pappert, J. Hong, G. Li, "Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers," IEEE Photon. Technol. Lett. 11, 1292-1294 (1999).

R. Drori, M. Einat, D. Shur, E. Jerby, G. Rosenman, R. Advani, R. J. Temkin, C. Pralong, "Demonsration of microwave generation by a ferroelectric cathode tube," Appl. Phys. Lett. 74, 335-337 (1999).

1997 (2)

Z. Fan, M. Dagenais, "Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop," IEEE. Trans. Microw. Theory Tech. 45, 1296-1300 (1997).

J. Genest, M. Chamberland, P. Tremblay, M. Tetu, "Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers," IEEE J. Quantum Electron 33, 989-998 (1997).

1992 (2)

R. T. Ramos, A. J. Seeds, "Fast heterodyne optical phase loop using double quantum-well laser diodes," Electron. Lett. 28, 82-83 (1992).

J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrow linewidth millimeter-wave signals," Electron. Lett. 28, 2309-2310 (1992).

1983 (1)

L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, "Microwave signal generation with injection locked laser-diodes," Electron. Lett. 19, 491-493 (1983).

App. Phys. Lett. (1)

Y. W. Song, S. Y. Jang, W. S. Han, M. K. Bae, "Graphene mode lockers for fiber lasers functioned with evanescent field interaction," App. Phys. Lett. 96, 051122-1-051122-3 (2010).

App. Phys. Lett. (1)

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, A. C. Ferrari, "Graphene Q-switched, tunable fiber laser," App. Phys. Lett. 98, 073106-1-073106-3 (2011).

App. Phys. Lett. (1)

H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, K. P. Loh, "Graphene mode locked, wavelength tunable, dissipative, soliton fiber laser," App. Phys. Lett. 96, 111112-1-111112-3 (2010).

Appl. Phys. B (1)

J. L. Zhou, L. Xia, X. P. Cheng, X. P. Dong, P. Shum, "Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser," Appl. Phys. B 91, 99-103 (2008).

Appl. Phys. Lett. (1)

R. Drori, M. Einat, D. Shur, E. Jerby, G. Rosenman, R. Advani, R. J. Temkin, C. Pralong, "Demonsration of microwave generation by a ferroelectric cathode tube," Appl. Phys. Lett. 74, 335-337 (1999).

Electron. Lett. (4)

S. Baunel, O. Brox, J. Kresnel, G. Sahin, B. Sartouis, "Optical microwave source," Electron. Lett. 38, 334-335 (2002).

J. J. O'Reilly, P. M. Lane, R. Heidemann, R. Hofstetter, "Optical generation of very narrow linewidth millimeter-wave signals," Electron. Lett. 28, 2309-2310 (1992).

R. T. Ramos, A. J. Seeds, "Fast heterodyne optical phase loop using double quantum-well laser diodes," Electron. Lett. 28, 82-83 (1992).

L. Goldberg, H. F. Taylor, J. F. Weller, D. M. Bloom, "Microwave signal generation with injection locked laser-diodes," Electron. Lett. 19, 491-493 (1983).

Electron. Lett. (1)

D. Chen, H. Fu, W. Liu, Y. Wei, S. He, "Dual wavelength single longitudinal mode erbium doped fiber laser based on fiber Bragg grating pair and its application in microwave signal generation," Electron. Lett. 44, 459-461 (2008).

IEEE J. Quantum Electron (1)

J. Genest, M. Chamberland, P. Tremblay, M. Tetu, "Microwave signals generated by optical heterodyne between injection-locked semiconductor lasers," IEEE J. Quantum Electron 33, 989-998 (1997).

IEEE Microw. Wireless Compon. Lett. (1)

Z. Li, M. Li, H. Chi, X. Zhang, J. Yao, "Photonic generation of phase coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating," IEEE Microw. Wireless Compon. Lett. 21, 694-696 (2011).

IEEE Photon. Technol. Lett. (2)

X. Wang, W. Mao, M. Al-Mumin, S. A. Pappert, J. Hong, G. Li, "Optical generation of microwave/millimeter-wave signals using two-section gain-coupled DFB lasers," IEEE Photon. Technol. Lett. 11, 1292-1294 (1999).

L. Wei, D. P. Zhou, H. Y. Fen, W. K. Liu, "Graphene-based Q-switched erbium-doped fiber laser with wide pulse-repetition-rate range," IEEE Photon. Technol. Lett. 24, 309-311 (2012).

IEEE Trans. Microw. Theory Tech. (1)

X. Chen, Z. Deng, J. Yao, "Photonic generation of microwave signal using a dual wavelength single longitudinal mode fiber ring laser," IEEE Trans. Microw. Theory Tech. 54, 804-809 (2006).

IEEE Photon. Technol. Lett. (2)

W. Li, J. Yao, "Microwave generation based on optical domain microwave frequency octupling," IEEE Photon. Technol. Lett. 22, 24-26 (2010).

J. Sun, Y. Dai, X. Chen, Y. Zhang, S. Xie, "Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation," IEEE Photon. Technol. Lett. 18, 2587-2589 (2006).

IEEE Photon. Technol. Lett. (1)

Y. Yao, X. F. Chen, Y. T. Dai, S. Z. Xie, "Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation," IEEE Photon. Technol. Lett. 18, 187-189 (2006).

IEEE Trans. Microw. Theory Tech. (1)

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, C. Bélisle, "Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique," IEEE Trans. Microw. Theory Tech. 53, 3090-3097 (2005).

IEEE. Trans. Microw. Theory Tech. (1)

Z. Fan, M. Dagenais, "Optical generation of a megahertz-linewidth microwave signal using semiconductor lasers and a discriminator-aided phase-locked loop," IEEE. Trans. Microw. Theory Tech. 45, 1296-1300 (1997).

J. Phys. B: At. Mol. Opt. Phys. (1)

B. Shuve, J. H. Thywissen, "Enhanced Pauli blocking of light scattering in a trapped Fermi gas," J. Phys. B: At. Mol. Opt. Phys. 43, 15301-15308(8) (2010).

J. Lightw. Technol. (5)

R. C. Williamson, "RF photonics," J. Lightw. Technol. 26, 1145-1153 (2008).

W. Liu, M. Jiang, D. Chen, S. He, "Dual wavelength single longitudinal mode polarization maintaining fiber laser and its application in microwave generation," J. Lightw. Technol. 27, 4455-4459 (2009).

P. O. Hedekvist, B. E. Olsson, A. Wiberg, "Microwave harmonic frequency generation utilizing the properties of an optical phase modulator," J. Lightw. Technol. 22, 882-886 (2004).

A. J. Seeds, K. J. Williams, "Microwave photonics," J. Lightw. Technol. 24, 4628-4641 (2006).

X. He, D. N. Wang, C. R. Liao, "Tunable and switchable dual wavelength single longitudinal mode erbium doped fiber lasers," J. Lightw. Technol. 29, 842-849 (2011).

J. Modern Opt. (2)

H. Ahmad, M. Z. Zulkifli, A. A. Latif, M. H. Jemangin, S. S. Chong, S. W. Harun, "Tunable single longitudinal mode S-band fiber laser using a 3 m length of erbium doped fiber," J. Modern Opt. 59, 1-6 (2012).

H. Ahmad, M. Z. Zulkifli, A. A. Latif, K. Thambiratnam, S. W. Harun, "Dual wavelength fibre laser with tunable channel spacing using an SOA and dual AWGs," J. Modern Opt. 56, 1768-1773 (2009).

Laser Phys. (1)

A. A. Latif, M. Z. Zulkifli, N. A. Awang, "A simple linear cavity dual-wavelength fiber laser using AWG as wavelength selective mechanism," Laser Phys. 20, 2006-2010 (2010).

Laser Phys. Lett. (1)

W. J. Cao, H. Y. Wang, A. P. Luo, Z. C. Luo, W.-C. Xu, "Graphene-based, 50 nm wideband tunable passively Q-switched fiber laser," Laser Phys. Lett. 9, 54-58 (2011).

Nature Photon. (3)

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, K. P. Loh, "Broadband graphene polarizer," Nature Photon. 5, 411-415 (2011).

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, "Graphene photonics and optoelectronics," Nature Photon. 4, 611-622 (2010).

J. Capmany, D. Novak, "Microwave photonics combine two worlds," Nature Photon. 1, 319-330 (2007).

Opt. Lett. (1)

G. Chen, D. Huang, X. Zhang, H. Cao, "Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber," Opt. Lett. 33, 554-556 (2008).

Opt. Commun. (1)

G. E. Villanueva, J. Palaci, J. L. Cruz, M. V. Andres, J. Marti, P. Millan, "High frequency microwave signal generation using dual wavelength emission of cascaded DFB fiber lasers with wavelength spacing tunability," Opt. Commun. 283, 5165-5168 (2010).

Opt. Exp. (2)

T. H. Wu, J. Wu, Y. J. Chiul, "Novel ultrawide-band (UWB) photonic generation through photodetection and cross absorption modulation in a single electroabsorption modulator," Opt. Exp. 18, 3379-3384 (2010).

S. Pan, J. Yao, "A wavelength switchable single longitudinal mode dual-wavelength erbium doped fiber laser for switchable microwave generation," Opt. Exp. 17, 5414-5419 (2009).

Opt. Lett. (1)

S. Pan, X. Zhao, C. Lou, "Switchable single longitudinal mode dual wavelength fiber ring laser using hybrid gain medium," Opt. Lett. 3, 764-766 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.