Abstract

The Finite-Difference Time-Domain (FDTD) method is used to study the frequency dependence of the transmission through a plasmonic screen with slots of sizes and spacing that were chosen using the spatially shifted beam approach to achieve subwavelength focusing. It is shown that the electric field beamwidth at the focal plane exhibits a resonance-like behavior in the vicinity of the frequency for which the meta-screen was designed to work. At this frequency range, the power flow path is shown to exhibit circulation around the slotted screen. Results are also compared with those given in for a similar device working at a lower frequency range where the metallic screen behaves as a perfect electric conductor.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. A. Ludwig, G. V. Eleftheriades, C. D. Sarris, "FDTD analysis of meta-screens for sub-wavelength focusing," Proc. IEEE APS/URSI2011 (2011) pp. 673-676.
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
  3. A. Grbic, G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403 (2004).
  4. N. Fang, H. Lee, C. Sun, X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
  5. F. Mesa, M. J. Freire, R. Marqués, J. D. Baena, "Three-dimensional superresolution in metamaterial slab lenses: Experiment and theory," Phys. Rev. B 72, 235117 (2005).
  6. A. Grbic, L. Jiang, R. Merlin, "Near-field plates: Subdiffraction focusing with patterned surfaces," Science 320, 511-513 (2008).
  7. G. V. Eleftheriades, A. M. H. Wong, "Holography-inspired screens for sub-wavelength focusing in the near field," Microw. Wireless Compon. Lett. 18, 236-238 (2008).
  8. R. Gordon, "Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array," Phys. Rev. Lett. 102, 207402 (2009).
  9. D. Choi, Y. Lim, S. Roh, I.-M. Lee, J. Jung, B. Lee, "Optical beam focusing with a metal slit array arranged along a semicircular surface and its optimization with a genetic algorithm," Appl. Opt. 49, A30-A35 (2010).
  10. L. Markley, A. M. H. Wong, Y. Wang, G. V. Eleftheriades, "Spatially shifted beam approach to subwavelength focusing," Phys. Rev. Lett. 101, 113901 (2008).
  11. Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, G. V. Eleftheriades, "Plasmonic meta-screen for alleviating the trade-offs in the near-field optics," Opt. Express 17, 12 351-12 361 (2009).
  12. K. Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
  13. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  14. W. Saj, "FDTD simulations of 2-D plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Exp. 13, 4818-4827 (2005).
  15. W. Heinrich, K. Beilenhoff, P. Mezzanotte, L. Roselli, "Optimum mesh grading for finite-difference method," IEEE Trans. Microw. Theory Tech. 44, 1569-1574 (1996).
  16. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).
  17. M.-C. Yang, K. J. Webb, "Poynting vector analysis of a superlens," Opt. Lett. 30, 2382-2384 (2005).
  18. M. Perez-Molina, L. Carretero, P. Acebal, S. Blaya, "Optical singularities and power flux in the near-field region of planar evanescent-field superlenses," J. Opt. Soc. Amer. A 25, 2865-2874 (2008).

2010 (1)

D. Choi, Y. Lim, S. Roh, I.-M. Lee, J. Jung, B. Lee, "Optical beam focusing with a metal slit array arranged along a semicircular surface and its optimization with a genetic algorithm," Appl. Opt. 49, A30-A35 (2010).

2009 (2)

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, G. V. Eleftheriades, "Plasmonic meta-screen for alleviating the trade-offs in the near-field optics," Opt. Express 17, 12 351-12 361 (2009).

R. Gordon, "Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array," Phys. Rev. Lett. 102, 207402 (2009).

2008 (4)

M. Perez-Molina, L. Carretero, P. Acebal, S. Blaya, "Optical singularities and power flux in the near-field region of planar evanescent-field superlenses," J. Opt. Soc. Amer. A 25, 2865-2874 (2008).

L. Markley, A. M. H. Wong, Y. Wang, G. V. Eleftheriades, "Spatially shifted beam approach to subwavelength focusing," Phys. Rev. Lett. 101, 113901 (2008).

A. Grbic, L. Jiang, R. Merlin, "Near-field plates: Subdiffraction focusing with patterned surfaces," Science 320, 511-513 (2008).

G. V. Eleftheriades, A. M. H. Wong, "Holography-inspired screens for sub-wavelength focusing in the near field," Microw. Wireless Compon. Lett. 18, 236-238 (2008).

2007 (1)

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).

2005 (4)

M.-C. Yang, K. J. Webb, "Poynting vector analysis of a superlens," Opt. Lett. 30, 2382-2384 (2005).

W. Saj, "FDTD simulations of 2-D plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Exp. 13, 4818-4827 (2005).

N. Fang, H. Lee, C. Sun, X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).

F. Mesa, M. J. Freire, R. Marqués, J. D. Baena, "Three-dimensional superresolution in metamaterial slab lenses: Experiment and theory," Phys. Rev. B 72, 235117 (2005).

2004 (1)

A. Grbic, G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403 (2004).

2000 (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).

1996 (1)

W. Heinrich, K. Beilenhoff, P. Mezzanotte, L. Roselli, "Optimum mesh grading for finite-difference method," IEEE Trans. Microw. Theory Tech. 44, 1569-1574 (1996).

1966 (1)

K. Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).

Appl. Opt. (1)

D. Choi, Y. Lim, S. Roh, I.-M. Lee, J. Jung, B. Lee, "Optical beam focusing with a metal slit array arranged along a semicircular surface and its optimization with a genetic algorithm," Appl. Opt. 49, A30-A35 (2010).

IEEE Trans. Antennas Propag. (1)

K. Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).

IEEE Trans. Microw. Theory Tech. (1)

W. Heinrich, K. Beilenhoff, P. Mezzanotte, L. Roselli, "Optimum mesh grading for finite-difference method," IEEE Trans. Microw. Theory Tech. 44, 1569-1574 (1996).

J. Opt. Soc. Amer. A (1)

M. Perez-Molina, L. Carretero, P. Acebal, S. Blaya, "Optical singularities and power flux in the near-field region of planar evanescent-field superlenses," J. Opt. Soc. Amer. A 25, 2865-2874 (2008).

Microw. Wireless Compon. Lett. (1)

G. V. Eleftheriades, A. M. H. Wong, "Holography-inspired screens for sub-wavelength focusing in the near field," Microw. Wireless Compon. Lett. 18, 236-238 (2008).

Opt. Exp. (1)

W. Saj, "FDTD simulations of 2-D plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Exp. 13, 4818-4827 (2005).

Opt. Express (1)

Y. Wang, A. M. H. Wong, L. Markley, A. S. Helmy, G. V. Eleftheriades, "Plasmonic meta-screen for alleviating the trade-offs in the near-field optics," Opt. Express 17, 12 351-12 361 (2009).

Opt. Lett. (1)

Phys. Rev. B (1)

F. Mesa, M. J. Freire, R. Marqués, J. D. Baena, "Three-dimensional superresolution in metamaterial slab lenses: Experiment and theory," Phys. Rev. B 72, 235117 (2005).

Phys. Rev. Lett. (5)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).

A. Grbic, G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Phys. Rev. Lett. 92, 117403 (2004).

R. Gordon, "Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array," Phys. Rev. Lett. 102, 207402 (2009).

L. Markley, A. M. H. Wong, Y. Wang, G. V. Eleftheriades, "Spatially shifted beam approach to subwavelength focusing," Phys. Rev. Lett. 101, 113901 (2008).

L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007).

Science (2)

N. Fang, H. Lee, C. Sun, X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).

A. Grbic, L. Jiang, R. Merlin, "Near-field plates: Subdiffraction focusing with patterned surfaces," Science 320, 511-513 (2008).

Other (2)

A. Ludwig, G. V. Eleftheriades, C. D. Sarris, "FDTD analysis of meta-screens for sub-wavelength focusing," Proc. IEEE APS/URSI2011 (2011) pp. 673-676.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.