Abstract

This paper investigates the nonlinear generation of ultra-flat broadband spectra suited to communication applications. The technique is based on the inclusion of a linear pulse shaping element prior to a nonlinear fiber, where highly controllable spectral broadening is enabled. An adaptive pulse shaping system exploiting optimization algorithms (evolution strategy—ES) allows for automatic convergence to the desired spectrum. Using this technique, a spectrum exhibiting a 3-dB bandwidth of ~12 nm and a 0.5-dB bandwidth of ~8 nm is reported. The technique can be used to generate even broader spectra or indeed spectra exhibiting more exotic shapes.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription