Abstract

A continuously tunable microwave fractional Hilbert transformer (FHT) implemented based on a nonuniformly spaced photonic microwave delay-line filter is proposed and demonstrated. An FHT has a frequency response with a unity magnitude response and a phase response having a phase shift between 0 and π at the center frequency. A seven-tap photonic microwave delay-line filter with nonuniformly spaced taps is designed to provide such a frequency response. The advantage of using nonuniform spacing is that an equivalent negative coefficient can be achieved by introducing an additional time delay leading to a π phase shift, corresponding to a negative coefficient. An FHT operating at a center frequency around 8.165 GHz with a tunable order between 0.24 and 1 is implemented. A classical HT operating at a center frequency of 7.573 GHz with a bandwidth greater than 4.5 GHz is also implemented. The use of the classical HT to perform temporal Hilbert transform of a Gaussian-like electrical pulse is demonstrated.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription