Abstract

Wavelength-striped optical packet multicasting comprises a potentially important functionality for future energy-efficient network applications. We report on two multicast-capable architectures to experimentally demonstrate multiwavelength packet multicasting in an optical switching fabric testbed. The first design uses programmable packet-splitter-and-delivery that simultaneously supports the nonblocking unicast, multicast, and broadcast of high-bandwidth optical packets with parallel switches. This realization achieves the error-free multicasting of optical messages with 8 × 10 Gb/s payloads, with confirmed bit-error rates less than 10<sup>-12</sup>, and scalability of per-channel data rates to 40 Gb/s. We then introduce a second multistage multicasting architecture with lower hardware and energy costs, with the design trade-off of more complex routing logic; the experimental demonstration shows the successful switching and error-free multicasting of 8 × 10 Gb/s optical packets. The energy costs in terms of the capital and operational expenditures are then compared for the two designs, showing the benefits of the second multicast architecture.

© 2012 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription