Abstract

In this paper, a thorough numerical analysis of the confinement loss in kagome and tube lattice fibers is presented. The results show that the confinement loss strongly depends on the shape of the struts composing the core boundary and the cladding. This explains why confinement loss in kagome fibers is much higher than in tube lattice ones. In fact, the closer to a perfectly circular arc the struts, the lower the confinement loss. For this reason, struts shape must be carefully controlled during the fabrication process.

© 2012 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, "Generation and photonic guidance of multi-octave frequency combs," Science 318, 118-121 (2007).
  2. A. Argiros, S. G. Leon-Saval, J. Pla, A. Docherty, "Antiresonant reflection and inhibited coupling in hollow-core square optical fibres," Opt. Exp. 16, 5642-5648 (2008).
  3. S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, J. Auguste, "Ultraviolet guiding hollow-core photonic crystal fiber," Opt. Lett. 34, 2888-2890 (2009).
  4. C. Lai, B. You, J. Lu, T. Liu, J. Peng, C. Sun, H. Chang, "Modal characteristics of antiresonant reflecting pipe waveguide for terahertz waveguiding," Opt. Exp. 18, 309-322 (2009).
  5. J. Lu, C. Yu, H. Chen, Y. Li, C. Pan, C. Sun, "Terahertz air-core microstructured fiber," Appl. Phys. Lett. 31, 064105-1-064105-3 (2008).
  6. F. Benabid, P. J. Roberts, F. Couny, P. S. Light, "Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells," J. Eur. Opt. Soc. Rapid Publications 4, 1-9 (2009).
  7. D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, "Generation of megawatt optical soliton in hollow-core photonic bandgap fiber," Science 310, 1702-1704 (2003).
  8. F. M. Cox, A. Argyros, M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Exp. 14, 4135-4140 (2006).
  9. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, H. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Exp. 12, 4080-4087 (2004).
  10. P. Yeh, A. Yariv, "Theory of Bragg fiber," J. Opt. Soc. Amer. 68, 1196-1201 (1978).
  11. G. Vienne, Y. Xu, C. Jakobsen, H. Deyerl, J. Jensen, T. Sorensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Exp. 12, 3500-3508 (2004).
  12. K. J. Rowland, V. S. Afshar, T. M. Monro, "Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model," Opt. Exp. 16, 17935-17951 (2008).
  13. J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).
  14. F. Benabid, "Hollow-core photonic bandgap fibre: New light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006).
  15. F. Couny, P. J. Roberts, T. A. Birks, F. Benabid, "Square-lattice large-pitch hollow-core photonic crystal fiber," Opt. Exp. 16, 20626-20636 (2008).
  16. L. Vincetti, V. Setti, "Waveguiding mechanism in tube lattice fibers," Opt. Exp. 18, 23133-23146 (2010).
  17. L. Vincetti, "Single-mode propagation in triangular tube lattice hollow-core terahertz fibers," Opt. Commun. 283, 979-984 (2010).
  18. S. Fevrier, B. Beaudou, P. Viale, "Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification," Opt. Exp. 18, 5142-5150 (2010).
  19. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, F. Benabid, "Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber," Opt. Lett. 36, 669-671 (2011).
  20. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, E. Dianov, "Demonstration of a waveguide regime for a silica hollow core micorstructured optical fiber with a negative curvature of the core boundary in the spectral region ${>} 3.5$ m," Opt. Exp. 19, 1441-1448 (2011).
  21. L. Vincetti, V. Setti, M. Zoboli, "Confinement loss of tube lattice and Kagome fibers," presented at the Conf. Specialty Optical Fibers (SOF) TorontoCanada (2011).
  22. D. S. Wu, A. Argyros, S. G. Leon-Saval, "Reducing the size of hollow terahertz waveguides," J. Lightw. Technol. 29, 97-103 (2011).
  23. L. Vincetti, "Numerical analysis of plastic hollow core microstructured fiber for terahertz applications," Opt. Fiber Technol. 15, 398-401 (2009).
  24. M. Kharadly, J. Lewis, "Properties of dielectric-tube waveguides," Proc. IEE 116, 214-224 (1969).
  25. S. Selleri, L. Vincetti, A. Cucinotta, M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quantum Electron. 33, 359-371 (2001).
  26. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Exp. 9, 748-779 (2001).

2011 (3)

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, F. Benabid, "Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber," Opt. Lett. 36, 669-671 (2011).

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, E. Dianov, "Demonstration of a waveguide regime for a silica hollow core micorstructured optical fiber with a negative curvature of the core boundary in the spectral region ${>} 3.5$ m," Opt. Exp. 19, 1441-1448 (2011).

D. S. Wu, A. Argyros, S. G. Leon-Saval, "Reducing the size of hollow terahertz waveguides," J. Lightw. Technol. 29, 97-103 (2011).

2010 (3)

L. Vincetti, V. Setti, "Waveguiding mechanism in tube lattice fibers," Opt. Exp. 18, 23133-23146 (2010).

L. Vincetti, "Single-mode propagation in triangular tube lattice hollow-core terahertz fibers," Opt. Commun. 283, 979-984 (2010).

S. Fevrier, B. Beaudou, P. Viale, "Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification," Opt. Exp. 18, 5142-5150 (2010).

2009 (4)

L. Vincetti, "Numerical analysis of plastic hollow core microstructured fiber for terahertz applications," Opt. Fiber Technol. 15, 398-401 (2009).

S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, J. Auguste, "Ultraviolet guiding hollow-core photonic crystal fiber," Opt. Lett. 34, 2888-2890 (2009).

C. Lai, B. You, J. Lu, T. Liu, J. Peng, C. Sun, H. Chang, "Modal characteristics of antiresonant reflecting pipe waveguide for terahertz waveguiding," Opt. Exp. 18, 309-322 (2009).

F. Benabid, P. J. Roberts, F. Couny, P. S. Light, "Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells," J. Eur. Opt. Soc. Rapid Publications 4, 1-9 (2009).

2008 (4)

J. Lu, C. Yu, H. Chen, Y. Li, C. Pan, C. Sun, "Terahertz air-core microstructured fiber," Appl. Phys. Lett. 31, 064105-1-064105-3 (2008).

A. Argiros, S. G. Leon-Saval, J. Pla, A. Docherty, "Antiresonant reflection and inhibited coupling in hollow-core square optical fibres," Opt. Exp. 16, 5642-5648 (2008).

K. J. Rowland, V. S. Afshar, T. M. Monro, "Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model," Opt. Exp. 16, 17935-17951 (2008).

F. Couny, P. J. Roberts, T. A. Birks, F. Benabid, "Square-lattice large-pitch hollow-core photonic crystal fiber," Opt. Exp. 16, 20626-20636 (2008).

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, "Generation and photonic guidance of multi-octave frequency combs," Science 318, 118-121 (2007).

2006 (2)

F. M. Cox, A. Argyros, M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Exp. 14, 4135-4140 (2006).

F. Benabid, "Hollow-core photonic bandgap fibre: New light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006).

2004 (2)

G. Vienne, Y. Xu, C. Jakobsen, H. Deyerl, J. Jensen, T. Sorensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Exp. 12, 3500-3508 (2004).

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, H. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Exp. 12, 4080-4087 (2004).

2003 (1)

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, "Generation of megawatt optical soliton in hollow-core photonic bandgap fiber," Science 310, 1702-1704 (2003).

2001 (2)

S. Selleri, L. Vincetti, A. Cucinotta, M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quantum Electron. 33, 359-371 (2001).

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Exp. 9, 748-779 (2001).

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).

1978 (1)

P. Yeh, A. Yariv, "Theory of Bragg fiber," J. Opt. Soc. Amer. 68, 1196-1201 (1978).

1969 (1)

M. Kharadly, J. Lewis, "Properties of dielectric-tube waveguides," Proc. IEE 116, 214-224 (1969).

Appl. Phys. Lett. (1)

J. Lu, C. Yu, H. Chen, Y. Li, C. Pan, C. Sun, "Terahertz air-core microstructured fiber," Appl. Phys. Lett. 31, 064105-1-064105-3 (2008).

J. Eur. Opt. Soc. Rapid Publications (1)

F. Benabid, P. J. Roberts, F. Couny, P. S. Light, "Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells," J. Eur. Opt. Soc. Rapid Publications 4, 1-9 (2009).

J. Lightw. Technol. (1)

D. S. Wu, A. Argyros, S. G. Leon-Saval, "Reducing the size of hollow terahertz waveguides," J. Lightw. Technol. 29, 97-103 (2011).

J. Opt. Soc. Amer. (1)

P. Yeh, A. Yariv, "Theory of Bragg fiber," J. Opt. Soc. Amer. 68, 1196-1201 (1978).

Opt. Commun. (1)

L. Vincetti, "Single-mode propagation in triangular tube lattice hollow-core terahertz fibers," Opt. Commun. 283, 979-984 (2010).

Opt. Exp. (4)

K. J. Rowland, V. S. Afshar, T. M. Monro, "Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model," Opt. Exp. 16, 17935-17951 (2008).

A. Argiros, S. G. Leon-Saval, J. Pla, A. Docherty, "Antiresonant reflection and inhibited coupling in hollow-core square optical fibres," Opt. Exp. 16, 5642-5648 (2008).

C. Lai, B. You, J. Lu, T. Liu, J. Peng, C. Sun, H. Chang, "Modal characteristics of antiresonant reflecting pipe waveguide for terahertz waveguiding," Opt. Exp. 18, 309-322 (2009).

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, E. Dianov, "Demonstration of a waveguide regime for a silica hollow core micorstructured optical fiber with a negative curvature of the core boundary in the spectral region ${>} 3.5$ m," Opt. Exp. 19, 1441-1448 (2011).

Opt. Lett. (1)

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, F. Benabid, "Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber," Opt. Lett. 36, 669-671 (2011).

Opt. Quantum Electron. (1)

S. Selleri, L. Vincetti, A. Cucinotta, M. Zoboli, "Complex FEM modal solver of optical waveguides with PML boundary conditions," Opt. Quantum Electron. 33, 359-371 (2001).

Opt. Exp. (7)

S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Soljacic, S. Jacobs, J. Joannopoulos, Y. Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Exp. 9, 748-779 (2001).

F. M. Cox, A. Argyros, M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Exp. 14, 4135-4140 (2006).

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, H. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Exp. 12, 4080-4087 (2004).

G. Vienne, Y. Xu, C. Jakobsen, H. Deyerl, J. Jensen, T. Sorensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, A. Yariv, "Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports," Opt. Exp. 12, 3500-3508 (2004).

S. Fevrier, B. Beaudou, P. Viale, "Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification," Opt. Exp. 18, 5142-5150 (2010).

F. Couny, P. J. Roberts, T. A. Birks, F. Benabid, "Square-lattice large-pitch hollow-core photonic crystal fiber," Opt. Exp. 16, 20626-20636 (2008).

L. Vincetti, V. Setti, "Waveguiding mechanism in tube lattice fibers," Opt. Exp. 18, 23133-23146 (2010).

Opt. Fiber Technol. (1)

L. Vincetti, "Numerical analysis of plastic hollow core microstructured fiber for terahertz applications," Opt. Fiber Technol. 15, 398-401 (2009).

Opt. Lett. (1)

Phil. Trans. R. Soc. A (1)

F. Benabid, "Hollow-core photonic bandgap fibre: New light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006).

Proc. IEE (1)

M. Kharadly, J. Lewis, "Properties of dielectric-tube waveguides," Proc. IEE 116, 214-224 (1969).

Science (3)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer, "Generation and photonic guidance of multi-octave frequency combs," Science 318, 118-121 (2007).

D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, "Generation of megawatt optical soliton in hollow-core photonic bandgap fiber," Science 310, 1702-1704 (2003).

J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell, "Photonic band gap guidance in optical fibers," Science 282, 1476-1478 (1998).

Other (1)

L. Vincetti, V. Setti, M. Zoboli, "Confinement loss of tube lattice and Kagome fibers," presented at the Conf. Specialty Optical Fibers (SOF) TorontoCanada (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.